Page Menu
Home
Phorge
Search
Configure Global Search
Log In
Files
F386708
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Size
36 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/examples/agent-functionalities/Reliability-functionality.cpp b/examples/agent-functionalities/Reliability-functionality.cpp
index 4991b92..860b303 100644
--- a/examples/agent-functionalities/Reliability-functionality.cpp
+++ b/examples/agent-functionalities/Reliability-functionality.cpp
@@ -1,106 +1,238 @@
//===- examples/agent-functionalities/Reliability-functionality.cpp *C++-*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file examples/agent-functionalities/Reliability-functionality.cpp
///
/// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at )
///
/// \date 2019
///
/// \brief A simple example on defining \c rosa::Agent instances using
/// Relianility Functionalities.
///
//===----------------------------------------------------------------------===//
#include "rosa/config/version.h"
#include "rosa/core/Agent.hpp"
#include "rosa/core/MessagingSystem.hpp"
#include "rosa/support/log.h"
#include "rosa/support/terminal_colors.h"
#include "rosa/agent/Reliability.h"
#include "rosa/agent/RangeConfidence.hpp"
+#include "rosa/agent/CrossReliability.h"
#include <vector>
#include <map>
using namespace rosa::agent;
int main(void)
{
typedef double SensorValueType;
typedef long StateType;
typedef double ReliabilityType;
// defining Range confidence
auto Confidence = new RangeConfidence<ReliabilityType, StateType, SensorValueType>({
{0, PartialFunction<double, double>({
{{0, 3}, std::make_shared<LinearFunction<double, double>>
(0, 1.0/3)},
{{3, 6}, std::make_shared<LinearFunction<double, double>>
(1, 0)},
{{6, 9}, std::make_shared<LinearFunction<double, double>>
(3.0, -1.0/3)},
},0)},
{1, PartialFunction<double, double>({
{{6, 9}, std::make_shared<LinearFunction<double, double>>
(-2, 1.0/3)},
{{9, 12}, std::make_shared<LinearFunction<double, double>>
(1, 0)},
{{12, 15}, std::make_shared<LinearFunction<double, double>>
(5, -1.0/3)},
},0)},
{2, PartialFunction<double, double>({
{{12, 15}, std::make_shared<LinearFunction<double, double>>
(-4, 1.0/3)},
{{15, 18}, std::make_shared<LinearFunction<double, double>>
(1, 0)},
{{18, 21}, std::make_shared<LinearFunction<double, double>>
(7, -1.0/3)},
},0)}
});
Abstraction<SensorValueType, ReliabilityType>* Reliability = new LinearFunction<SensorValueType, ReliabilityType>(1,-1.0/9);
auto ReliabilitySlope = new LinearFunction<SensorValueType, ReliabilityType>(1, -1.0/9);
auto TimeConfidence = new LinearFunction<std::size_t, ReliabilityType>(1, -1.0/9);
auto lowlevel = new LowLevel <SensorValueType, StateType, ReliabilityType>();
std::vector<long> states;
states.push_back(0);
states.push_back(1);
states.push_back(2);
lowlevel->setConfidenceFunction(Confidence);
lowlevel->setReliabilityFunction(Reliability);
lowlevel->setReliabilitySlopeFunction(ReliabilitySlope);
lowlevel->setTimeConfidenceFunction(TimeConfidence);
lowlevel->setStates(states);
- lowlevel->setHistoryLength(1);
+ lowlevel->setHistoryLength(2);
+ lowlevel->setValueSetCounter(1);
/* ----------------------------- Do Something ---------------------------------------------------------------- */
for ( int a= 0 ; a <10 ; a++)
std::cout <<"a: " << a << "\n" << (lowlevel->feedback({{0,0},{1,0.3},{2,0.5}}),lowlevel->operator()(a)) << "\n";
/* ----------------------------- Cleanup --------------------------------------------------------------------- */
+ std::cout << "------------------------------------------------------------------------------------------------\n";
+ std::cout << "------------------------------------High level Test---------------------------------------------\n";
+
+
+
+
+ auto Confidence2 = new RangeConfidence<ReliabilityType, StateType, SensorValueType>({
+ {0, PartialFunction<double, double>({
+ {{0, 3}, std::make_shared<LinearFunction<double, double>>
+ (0, 1.0/3)},
+ {{3, 6}, std::make_shared<LinearFunction<double, double>>
+ (1, 0)},
+ {{6, 9}, std::make_shared<LinearFunction<double, double>>
+ (3.0, -1.0/3)},
+ },0)},
+ {1, PartialFunction<double, double>({
+ {{6, 9}, std::make_shared<LinearFunction<double, double>>
+ (-2, 1.0/3)},
+ {{9, 12}, std::make_shared<LinearFunction<double, double>>
+ (1, 0)},
+ {{12, 15}, std::make_shared<LinearFunction<double, double>>
+ (5, -1.0/3)},
+ },0)},
+ {2, PartialFunction<double, double>({
+ {{12, 15}, std::make_shared<LinearFunction<double, double>>
+ (-4, 1.0/3)},
+ {{15, 18}, std::make_shared<LinearFunction<double, double>>
+ (1, 0)},
+ {{18, 21}, std::make_shared<LinearFunction<double, double>>
+ (7, -1.0/3)},
+ },0)}
+ });
+
+
+ Abstraction<SensorValueType, ReliabilityType>* Reliability2 = new LinearFunction<SensorValueType, ReliabilityType>(1,-1.0/9);
+
+
+ auto ReliabilitySlope2 = new LinearFunction<SensorValueType, ReliabilityType>(1, -1.0/9);
+
+
+ auto TimeConfidence2 = new LinearFunction<std::size_t, ReliabilityType>(1, -1.0/9);
+
+ auto lowlevel2 = new LowLevel <SensorValueType, StateType, ReliabilityType>();
+
+ std::vector<long> states2;
+ states2.push_back(0);
+ states2.push_back(1);
+ states2.push_back(2);
+
+
+ lowlevel2->setConfidenceFunction(Confidence2);
+ lowlevel2->setReliabilityFunction(Reliability2);
+ lowlevel2->setReliabilitySlopeFunction(ReliabilitySlope2);
+ lowlevel2->setTimeConfidenceFunction(TimeConfidence2);
+ lowlevel2->setStates(states2);
+ lowlevel2->setHistoryLength(2);
+ lowlevel2->setValueSetCounter(1);
+
+
+ HighLevel<StateType,ReliabilityType>* highlevel=new HighLevel<StateType,ReliabilityType>();
+
+ CrossReliability<StateType,ReliabilityType>* CrossReliability1= new CrossReliability<StateType,ReliabilityType>();
+
+ Abstraction<long,double>* func1=new PartialFunction<long, double>({
+ {{0, 1}, std::make_shared<LinearFunction<long, double>>
+ (1, 0)},
+ {{1,2}, std::make_shared<LinearFunction<long, double>>
+ (2, -1.0)},
+ },0);
+
+ CrossReliability1->addCrossReliabilityProfile(0,1,func1);
+ CrossReliability1->setCrossReliabilityMethod(CrossReliability<StateType,ReliabilityType>::AVERAGE);
+ CrossReliability1->setCrossReliabilityParameter(1);
+
+
+
+ CrossConfidence<StateType,ReliabilityType>* CrossConfidence1= new CrossConfidence<StateType,ReliabilityType>();
+
+ Abstraction<long,double>* func2=new PartialFunction<long, double>({
+ {{0, 1}, std::make_shared<LinearFunction<long, double>>
+ (1, 0)},
+ {{1,2}, std::make_shared<LinearFunction<long, double>>
+ (2, -1.0)},
+ },0);
+
+ CrossConfidence1->addCrossReliabilityProfile(0,1,func2);
+ CrossConfidence1->setCrossReliabilityMethod(CrossConfidence<StateType,ReliabilityType>::AVERAGE);
+ CrossConfidence1->setCrossReliabilityParameter(1);
+
+
+ highlevel->setFunction(CrossConfidence1);
+ highlevel->setFunction(CrossReliability1);
+ highlevel->MaximumState=2;
+
+
+for ( int a= 0 ; a <21 ; a++)
+{
+ auto out1=lowlevel->operator()(a),out2=lowlevel2->operator()(21-a);
+ std::cout << "s1: " << out1 << "\ns2:" << out2 << "\n";
+ std::vector<std::tuple<rosa::id_t, StateType, ReliabilityType>> tmp2;
+ tmp2.push_back({0,out1.score,out1.Reliability});
+ tmp2.push_back({1,out2.score,out2.Reliability});
+
+ auto out_o=highlevel->operator()(tmp2);
+ std::cout << "it: " << a << "\t rel: " << out_o.CrossReliability << "\n";
+ std::cout << "\t subs:\n";
+ for (auto q:out_o.CrossConfidence)
+ {
+ std::cout<< "\t\t id:" << q.first << "\n";
+ std::vector<LowLevel<SensorValueType, StateType, ReliabilityType>::ConfOrRel> tmp;
+ for(auto z: q.second)
+ {
+ std::cout << "\t\t\t score: " << z.score << "\tRel: " << z.Reliability << "\n";
+ tmp.push_back({z.score,z.Reliability});
+ }
+
+ if(q.first==0)
+ lowlevel->feedback(tmp);
+ else
+ lowlevel2->feedback(tmp);
+
+ }
+
+}
+
+
+
+
+
delete lowlevel;
+ delete lowlevel2;
}
\ No newline at end of file
diff --git a/include/rosa/agent/CrossReliability.h b/include/rosa/agent/CrossReliability.h
index d3a1f16..af67744 100644
--- a/include/rosa/agent/CrossReliability.h
+++ b/include/rosa/agent/CrossReliability.h
@@ -1,344 +1,347 @@
//===-- rosa/delux/CrossReliability.h ---------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/delux/CrossReliability.h
///
/// \author Daniel Schnoell
///
/// \date 2019
///
/// \brief
///
/// \todo there is 1 exception that needs to be handled correctly.
/// \note the default search function is extremely slow maby this could be done
/// via template for storage class and the functions/methods to efficiently find
/// the correct LinearFunction
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_CROSSRELIABILITY_H
#define ROSA_AGENT_CROSSRELIABILITY_H
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/core/forward_declarations.h" // needed for id_t
#include "rosa/support/log.h" // needed for error "handling"
// nedded headers
#include <string>
#include <type_traits> //assert
#include <vector>
// for static methods
#include <algorithm>
#include <numeric>
namespace rosa {
namespace agent {
/// Calculates the Cross Reliability
/// \brief it uses the state represented by a numerical value and calculates the
/// Reliability of a given agent( represented by there id ) in connection to all
/// other given agents
///
/// \note all combination of agents and there coresponding Cross Reliability
/// function have to be specified
template <typename StateType, typename Type>
class CrossReliability : public Abstraction<StateType, Type> {
using Abstraction = typename rosa::agent::Abstraction<StateType, Type>;
struct Functionblock {
bool exists = false;
id_t A;
id_t B;
Abstraction *Funct;
};
/// From Maxi in his code defined as 1 can be changed by set
Type crossReliabilityParameter = 1;
/// Stored Cross Reliability Functions
std::vector<Functionblock> Functions;
/// Method which is used to combine the generated values
Type (*Method)(std::vector<Type> values) = AVERAGE;
//--------------------------------------------------------------------------------
// helper function
/// evalues the absolute distance between two values
/// \note this is actually the absolute distance but to ceep it somewhat
/// conform with maxis code
template <typename Type_t> Type_t AbsuluteValue(Type_t A, Type_t B) {
static_assert(std::is_arithmetic<Type_t>::value);
return ((A - B) < 0) ? B - A : A - B;
}
/// verry inefficient searchFunction
Functionblock (*searchFunction)(std::vector<Functionblock> vect,
const id_t nameA, const id_t nameB) =
[](std::vector<Functionblock> vect, const id_t nameA,
const id_t nameB) -> Functionblock {
for (Functionblock tmp : vect) {
if (tmp.A == nameA && tmp.B == nameB)
return tmp;
if (tmp.A == nameB && tmp.B == nameA)
return tmp;
}
return Functionblock();
};
/// evaluest the corisponding LinearFunction thith the score difference
/// \param nameA these two parameters are the unique identifiers
/// \param nameB these two parameters are the unique identifiers
/// for the LinerFunction
///
/// \note If the block nameA nameB doesn't exist it logs the error and returns
/// 0
/// \note it doesn't matter if they are swapped
Type getCrossReliabilityFromProfile(id_t nameA, id_t nameB,
StateType scoreDifference) {
Functionblock block = searchFunction(Functions, nameA, nameB);
if (!block.exists) {
LOG_ERROR(("CrossReliability: Block:" + std::to_string(nameA) + "," +
std::to_string(nameB) + "doesn't exist returning 0"));
return 0;
}
return block.Funct->operator()(scoreDifference);
}
public:
/// adds a Cross Reliability Profile used to get the Reliability of the state
/// difference
void addCrossReliabilityProfile(id_t idA, id_t idB, Abstraction *Function) {
Functions.push_back({true, idA, idB, Function});
}
/// sets the cross reliability parameter
void setCrossReliabilityParameter(Type val) {
crossReliabilityParameter = val;
}
/// sets the used method to combine the values
void setCrossReliabilityMethod(Type (*Meth)(std::vector<Type> values)) {
Method = Meth;
}
+ CrossReliability():Abstraction(0) {}
+
+
~CrossReliability() {
for (auto tmp : Functions)
delete tmp.Funct;
Functions.clear();
}
/// Calculets the CrossReliability
/// \note both Main and Slaveagents are represented by there data and an
/// unique identifier
///
/// \param MainAgent defines the value pair around which the Cross Reliability
/// is calculated
/// \param SlaveAgents defines all value pairs of the connected Agents it
/// doesn't matter if Main agent exists inside this vector
- Type operator()(std::pair<id_t, StateType> &MainAgent,
- std::vector<std::pair<id_t, StateType>> &SlaveAgents);
+ Type operator()(std::pair<id_t, StateType> &&MainAgent,
+ std::vector<std::pair<id_t, StateType>> &&SlaveAgents);
/// predefined combination method
static Type CONJUNCTION(std::vector<Type> values) {
static_assert(std::is_arithmetic<Type>::value); // sanitny check
return *std::min_element(values.begin(), values.end());
}
/// predefined combination method
static Type AVERAGE(std::vector<Type> values) {
static_assert(std::is_arithmetic<Type>::value); // sanitny check
return std::accumulate(values.begin(), values.end(), 0.0) / values.size();
}
/// predefined combination method
static Type DISJUNCTION(std::vector<Type> values) {
static_assert(std::is_arithmetic<Type>::value); // sanitny check
return *std::max_element(values.begin(), values.end());
}
};
template <typename StateType, typename Type>
inline Type CrossReliability<StateType, Type>::
-operator()(std::pair<id_t, StateType> &MainAgent,
- std::vector<std::pair<id_t, StateType>> &SlaveAgents) {
+operator()(std::pair<id_t, StateType> &&MainAgent,
+ std::vector<std::pair<id_t, StateType>> &&SlaveAgents) {
static_assert(std::is_arithmetic<Type>::value); // sanitny check
static_assert(std::is_arithmetic<StateType>::value); // sanitny check
Type crossReliabiability;
std::vector<Type> values;
for (std::pair<id_t, StateType> SlaveAgent : SlaveAgents) {
if (SlaveAgent.first == MainAgent.first)
continue;
if (MainAgent.second == SlaveAgent.second)
crossReliabiability = 1;
else
crossReliabiability =
1 / (crossReliabilityParameter *
AbsuluteValue(MainAgent.second, SlaveAgent.second));
// profile reliability
Type crossReliabilityFromProfile = getCrossReliabilityFromProfile(
MainAgent.first, SlaveAgent.first,
AbsuluteValue(MainAgent.second, SlaveAgent.second));
values.push_back(
std::max(crossReliabiability, crossReliabilityFromProfile));
}
return Method(values);
}
/// Calculates the Cross Confidence
/// \brief It uses the a theoretical state represented by a numerical value and
/// calculates the Reliability of a given agent( represented by there id ) in
/// connection to all other given agents this can be used to get a Confidence of
/// the current state
///
/// \note all combination of agents and there coresponding Cross Reliability
/// function have to be specified
template <typename StateType, typename Type>
class CrossConfidence : public Abstraction<StateType, Type> {
using Abstraction = typename rosa::agent::Abstraction<StateType, Type>;
struct Functionblock {
bool exists = false;
id_t A;
id_t B;
Abstraction *Funct;
};
/// From Maxi in his code defined as 1 can be changed by set
Type crossReliabilityParameter = 1;
/// Stored Cross Reliability Functions
std::vector<Functionblock> Functions;
/// Method which is used to combine the generated values
Type (*Method)(std::vector<Type> values) = AVERAGE;
//--------------------------------------------------------------------------------
// helper function
/// evalues the absolute distance between two values
/// \note this is actually the absolute distance but to ceep it somewhat
/// conform with maxis code
template <typename Type_t> Type_t AbsuluteValue(Type_t A, Type_t B) {
static_assert(std::is_arithmetic<Type_t>::value);
return ((A - B) < 0) ? B - A : A - B;
}
/// verry inefficient searchFunction
Functionblock (*searchFunction)(std::vector<Functionblock> vect,
const id_t nameA, const id_t nameB) =
[](std::vector<Functionblock> vect, const id_t nameA,
const id_t nameB) -> Functionblock {
for (Functionblock tmp : vect) {
if (tmp.A == nameA && tmp.B == nameB)
return tmp;
if (tmp.A == nameB && tmp.B == nameA)
return tmp;
}
return Functionblock();
};
/// evaluest the corisponding LinearFunction thith the score difference
/// \param nameA these two parameters are the unique identifiers
/// \param nameB these two parameters are the unique identifiers
/// for the LinerFunction
///
/// \note it doesn't matter if they are swapped
Type getCrossReliabilityFromProfile(id_t nameA, id_t nameB,
StateType scoreDifference) {
Functionblock block = searchFunction(Functions, nameA, nameB);
if (!block.exists) {
LOG_ERROR(("CrossReliability: Block:" + std::to_string(nameA) + "," +
std::to_string(nameB) + "doesn't exist returning 0"));
return 0;
}
return block.Funct->operator()(scoreDifference);
}
public:
/// adds a Cross Reliability Profile used to get the Reliability of the state
/// difference
void addCrossReliabilityProfile(id_t idA, id_t idB, Abstraction *Function) {
Functions.push_back({true, idA, idB, Function});
}
/// sets the cross reliability parameter
void setCrossReliabilityParameter(Type val) {
crossReliabilityParameter = val;
}
/// sets the used method to combine the values
void setCrossReliabilityMethod(Type (*Meth)(std::vector<Type> values)) {
Method = Meth;
}
~CrossConfidence() {
for (auto tmp : Functions)
delete tmp.Funct;
Functions.clear();
}
Type operator()(id_t MainAgent, StateType TheoreticalValue,
std::vector<std::pair<id_t, StateType>> &SlaveAgents);
/// predefined combination method
static Type CONJUNCTION(std::vector<Type> values) {
static_assert(std::is_arithmetic<Type>::value); // sanitny check
return *std::min_element(values.begin(), values.end());
}
/// predefined combination method
static Type AVERAGE(std::vector<Type> values) {
static_assert(std::is_arithmetic<Type>::value); // sanitny check
return std::accumulate(values.begin(), values.end(), 0.0) / values.size();
}
/// predefined combination method
static Type DISJUNCTION(std::vector<Type> values) {
static_assert(std::is_arithmetic<Type>::value); // sanitny check
return *std::max_element(values.begin(), values.end());
}
};
template <typename StateType, typename Type>
inline Type CrossConfidence<StateType, Type>::
operator()(id_t MainAgent, StateType TheoreticalValue,
std::vector<std::pair<id_t, StateType>> &SlaveAgents) {
static_assert(std::is_arithmetic<Type>::value); // sanitny check
static_assert(std::is_arithmetic<StateType>::value); // sanitny check
Type crossReliabiability;
std::vector<Type> values;
for (std::pair<id_t, StateType> SlaveAgent : SlaveAgents) {
if (SlaveAgent.first == MainAgent)
continue;
if (TheoreticalValue == SlaveAgent.second)
crossReliabiability = 1;
else
crossReliabiability =
1 / (crossReliabilityParameter *
AbsuluteValue(TheoreticalValue, SlaveAgent.second));
// profile reliability
Type crossReliabilityFromProfile = getCrossReliabilityFromProfile(
MainAgent, SlaveAgent.first,
AbsuluteValue(TheoreticalValue, SlaveAgent.second));
values.push_back(
std::max(crossReliabiability, crossReliabilityFromProfile));
}
return Method(values);
}
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_CROSSRELIABILITY_H
\ No newline at end of file
diff --git a/include/rosa/agent/Reliability.h b/include/rosa/agent/Reliability.h
index 70290d5..18998fd 100644
--- a/include/rosa/agent/Reliability.h
+++ b/include/rosa/agent/Reliability.h
@@ -1,413 +1,433 @@
//===-- rosa/agent/Reliability.h --------------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/Reliability.h
///
/// \author Daniel Schnoell (danielschnoell@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *reliability* *functionality*.
///
/// \note All classes throw runtime errors if not all things are set
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_RELIABILITY_H
#define ROSA_AGENT_RELIABILITY_H
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/RangeConfidence.hpp"
#include "rosa/agent/CrossReliability.h"
#include <vector>
#include <algorithm>
#define __ostream_output true
namespace rosa {
namespace agent {
/// This is the Reliability Functionality for a low level Agent
/// \tparam SensorValueType Datatype of the Sensor value ( Typically double or float)
/// \tparam StateType Datatype of the State ( Typically long or int)
/// \tparam ReliabilityType Datatype of the Reliability ( Typically double or float)
///
/// use the () operator to get the reliability and feed the information from the master back to this
/// \note all pointer for the functionalities will be deleted when this is object ist destroyed
template <typename SensorValueType, typename StateType, typename ReliabilityType>
class LowLevel {
+ public:
struct ConfOrRel {
StateType score;
ReliabilityType Reliability;
ConfOrRel(StateType _score,ReliabilityType _Reliability):score(_score),Reliability(_Reliability){};
ConfOrRel() {};
#if __ostream_output
friend std::ostream & operator << (std::ostream &out, const ConfOrRel &c)
{
out << "Score: " << c.score << "\t Reliability: " << c.Reliability << " " ;
return out;
}
#endif
};
- public:
/// Calculates the Conf/ Reliability
/// \param SensorValue The current Values of the Sensor
///
/// \return Reliability of the current Value
ConfOrRel operator()(SensorValueType SensorValue) {
std::map<StateType, ReliabilityType> ActuallPosibleScores_tmp = Confidence->operator()(SensorValue);
-
+
std::vector<ConfOrRel> ActuallPossibleScores;
for (StateType state : States)
{
if(ActuallPosibleScores_tmp.find(state)!=ActuallPosibleScores_tmp.end())
{
ConfOrRel val;
val.score=state;
val.Reliability=ActuallPosibleScores_tmp.find(state)->second;
ActuallPossibleScores.push_back(val);
}
}
ReliabilityType inputReliability;
if (PreviousSensorValueExists)
inputReliability = getRelibility(SensorValue, previousSensorValue, valueSetCounter);
else
inputReliability = Reliability->operator()(SensorValue);
+ std::cout << "input Rel: " << inputReliability << "\n";
+
for (std::size_t at = 0; at < ActuallPossibleScores.size(); at++)
ActuallPossibleScores.at(at).Reliability = std::min(ActuallPossibleScores.at(at).Reliability, inputReliability);
for (std::size_t APS_at = 0; APS_at < ActuallPossibleScores.size(); APS_at++)
for (std::size_t VFM_at = 0; VFM_at < ValuesFromMaster.size(); VFM_at++) {
if (ActuallPossibleScores.at(APS_at).score == ValuesFromMaster.at(VFM_at).score) {
ActuallPossibleScores.at(APS_at).Reliability = ActuallPossibleScores.at(APS_at).Reliability + ValuesFromMaster.at(VFM_at).Reliability;
}
}
saveInHistory(ActuallPossibleScores);
std::vector<ConfOrRel> possibleScores;
possibleScores=getAllPossibleScoresBasedOnHistory(possibleScores);
std::sort(possibleScores.begin(), possibleScores.end(), [](ConfOrRel A, ConfOrRel B)-> bool {return A.Reliability > B.Reliability; });
previousSensorValue = SensorValue;
PreviousSensorValueExists = true;
+
for(auto val:ActuallPossibleScores)
std::cout <<"inside APS:" << val << "\n";
for(auto val:possibleScores)
std::cout <<"inside PS:" << val << "\n";
-
+
return possibleScores.at(0);
}
/// Needed feedback from the Master
/// \param ValuesFromMaster The Scores + Reliability from the Master for this Agent
void feedback(std::vector<ConfOrRel> ValuesFromMaster)
{
this->ValuesFromMaster = ValuesFromMaster;
}
/// This is the setter for Confidence Function
/// \param Confidence A pointer to the Functional for the Confidence
void setConfidenceFunction(RangeConfidence<ReliabilityType, StateType, SensorValueType>* Confidence)
{
this->Confidence = Confidence;
}
/// This is the setter for Reliability Function
/// \param Reliability A pointer to the Functional for the Reliability
void setReliabilityFunction(Abstraction<SensorValueType, ReliabilityType>* Reliability)
{
this->Reliability = Reliability;
}
/// This is the setter for ReliabilitySlope Function
/// \param ReliabilitySlope A pointer to the Functional for the ReliabilitySlope
void setReliabilitySlopeFunction(Abstraction<SensorValueType, ReliabilityType>* ReliabilitySlope)
{
this->ReliabilitySlope = ReliabilitySlope;
}
/// This is the setter for TimeConfidence Function
/// \param TimeConfidence A pointer to the Functional for the TimeConfidence
void setTimeConfidenceFunction(Abstraction<std::size_t, ReliabilityType>* TimeConfidence)
{
this->TimeConfidence = TimeConfidence;
}
/// This is the setter for all possible States
/// \param states A vertor for all states
void setStates(std::vector<StateType> states)
{
this->States=states;
}
/// This sets the Maximum length of the Histpry
/// \param length The length
void setHistoryLength(std::size_t length)
{
this->HistoryMaxSize=length;
}
+ /// This sets the Value set Counter
+ /// \param ValueSetCounter the new Value
+ void setValueSetCounter(unsigned int ValueSetCounter)
+ {
+ this->valueSetCounter=ValueSetCounter;
+ }
/// deletes all given pointers
~LowLevel()
{
delete Confidence;
Confidence = nullptr;
delete Reliability;
Reliability = nullptr;
delete ReliabilitySlope;
ReliabilitySlope = nullptr;
delete TimeConfidence;
TimeConfidence = nullptr;
}
private:
std::vector<std::vector<ConfOrRel>> History;
std::size_t HistoryMaxSize;
std::vector<ConfOrRel> ValuesFromMaster;
SensorValueType previousSensorValue;
unsigned int valueSetCounter;
std::vector<StateType> States;
bool PreviousSensorValueExists = false;
RangeConfidence<ReliabilityType, StateType, SensorValueType>* Confidence = nullptr;
Abstraction<SensorValueType, ReliabilityType>* Reliability = nullptr;
Abstraction<SensorValueType, ReliabilityType>* ReliabilitySlope = nullptr;
Abstraction<std::size_t, ReliabilityType>* TimeConfidence = nullptr;
/*--------------------------------- needed Funktions -----------------------------------------------------*/
/// returns the Reliability
/// \param actualValue The Value of the Sensor
/// \param lastValue of the Sensor this is stored in the class
/// \param valueSetCounter Todo
ReliabilityType getRelibility(SensorValueType actualValue, SensorValueType lastValue, unsigned int valueSetCounter) {
ReliabilityType relAbs = Reliability->operator()(actualValue);
if (PreviousSensorValueExists)
{
ReliabilityType relSlo = ReliabilitySlope->operator()((lastValue - actualValue) / (SensorValueType)valueSetCounter);
// calculate signal input reliability
// NOTE: options would be multiply, average, AND (best to worst:
// average = AND > multiply) rel = relAbs * relSlo; rel = (relAbs +
// relSlo)/2;
return std::min(relAbs, relSlo);
}
else
return relAbs;
}
/// adabts the possible Scores by checking the History and combines those values currently with max
/// \param possibleScores This is returned from the Master
std::vector<ConfOrRel> getAllPossibleScoresBasedOnHistory(std::vector<ConfOrRel> possibleScores) {
//iterate through all history entries
std::size_t posInHistory = 0;
for (auto pShE = History.begin(); pShE < History.end(); pShE++, posInHistory++) {
//iterate through all possible scores of each history entry
for (ConfOrRel& pSh : *pShE) {
//printf("a3\n");
StateType historyScore = pSh.score;
ReliabilityType historyConf = pSh.Reliability;
//combine each history score with the confidence of time
//NOTE: multiplication, AND, or average would be alternatives (best to worst: multiplication = AND = average)
historyConf = historyConf * TimeConfidence->operator()(posInHistory);
//historyConf = (historyConf + TimeConfidence(posInHistory)) / 2;
//historyConf = std::min(historyConf, TimeConfidence(posInHistory));
//printf("a4\n");
bool foundScore = false;
for (ConfOrRel& pS : possibleScores) {
if (pS.score == historyScore) {
//calculate confidence for score
//NOTE: multiplication, AND, or average would be alternatives (best to worst: AND >> average = multiplication )
//pS->confOrRel = pS->confOrRel * historyConf;
//pS->confOrRel = (pS->confOrRel + historyConf) / 2;
pS.Reliability = std::max(pS.Reliability, historyConf);
foundScore = true;
}
}
if (foundScore == false) {
ConfOrRel possibleScore;
possibleScore.score = historyScore;
possibleScore.Reliability = historyConf;
possibleScores.push_back(possibleScore);
}
}
}
return possibleScores;
}
/// saves the Scores in the History
/// \param actualPossibleScores The Scores which should be saved
void saveInHistory(std::vector<ConfOrRel> actualPossibleScores) {
//check if the reliability of at least one possible score is high enough
bool atLeastOneRelIsHigh = false;
for (ConfOrRel pS : actualPossibleScores) {
if (pS.Reliability > 0.5) {
atLeastOneRelIsHigh = true;
}
}
//save possible scores if at least one possible score is high enough (or if the history is empty)
if (History.size() < 1 || atLeastOneRelIsHigh == true) {
History.insert(History.begin(),actualPossibleScores);
//if history size is higher than allowed, savo oldest element
while (History.size() > HistoryMaxSize) {
//delete possibleScoreHistory.back();
History.pop_back();
}
}
}
};
/// This is the Reliability Functionality for the Highlevel Agent
/// \tparam StateType Datatype of the State ( Typically double or float)
/// \tparam ReliabilityType Datatype of the Reliability ( Typically long or int)
///
/// use the () operator to calculate the Reliability and all cross confidences for all slaves
/// \note all pouinter to Funcionalities get deleted upon termitation of the object
template<typename StateType, typename ReliabilityType>
class HighLevel
{
public:
struct ConfOrRel {
StateType score;
ReliabilityType Reliability;
+
+ ConfOrRel(StateType _score,ReliabilityType _Reliability):score(_score),Reliability(_Reliability){};
+ ConfOrRel() {};
+ #if __ostream_output
+ friend std::ostream & operator << (std::ostream &out, const ConfOrRel &c)
+ {
+ out << "Score: " << c.score << "\t Reliability: " << c.Reliability << " " ;
+ return out;
+ }
+ #endif
};
struct returnType {
ReliabilityType CrossReliability;
std::vector<std::pair<id_t, std::vector<ConfOrRel>>> CrossConfidence;
};
StateType MaximumState;
- returnType operator()(std::vector<std::tuple<id_t, StateType, ReliabilityType>> Values)
+ returnType operator()(std::vector<std::tuple<id_t, StateType, ReliabilityType>> &Values)
{
StateType EWS = 0;
ReliabilityType combinedInputRel = 1;
ReliabilityType combinedCrossRel = 1;
ReliabilityType outputReliability;
std::vector<std::pair<id_t, StateType>> Agents;
std::vector<std::pair<id_t, std::vector<ConfOrRel>>> output;
std::vector<ConfOrRel> output_temporary;
for (auto tmp : Values)
{
std::pair<id_t, StateType> tmp2;
- tmp.first = std::get<0>(tmp);
- tmp.second = std::get<1>(tmp);
- Agents.push_back(tmp);
+ tmp2.first = std::get<0>(tmp);
+ tmp2.second = std::get<1>(tmp);
+ Agents.push_back(tmp2);
}
for (auto Value : Values) {
+ id_t id = std::get<0>(Value);
StateType sc = std::get<1>(Value);
ReliabilityType rel = std::get<2>(Value);
EWS = EWS + sc;
combinedInputRel = std::min(combinedInputRel, rel);
//calculate the cross reliability for this slave agent
- ReliabilityType realCrossReliabilityOfSlaveAgent = CrossReliability({ std::get<0>(Value),std::get<1>(Value) }, Agents); //AVERAGE, MULTIPLICATION, CONJUNCTION (best to worst: AVERAGE = CONJUNCTION > MULTIPLICATION >> )
+ ReliabilityType realCrossReliabilityOfSlaveAgent = CrossReliability->operator()({id,sc }, Agents); //AVERAGE, MULTIPLICATION, CONJUNCTION (best to worst: AVERAGE = CONJUNCTION > MULTIPLICATION >> )
output_temporary.clear();
for (StateType theoreticalScore = 0; theoreticalScore <= MaximumState; theoreticalScore++) {
//calculate the cross reliability for this slave agent
ConfOrRel data;
data.score = theoreticalScore;
- data.Reliability = CrossConfidence(std::get<0>(Value), theoreticalScore, Agents);
+ data.Reliability = CrossConfidence->operator()(id, theoreticalScore, Agents);
output_temporary.push_back(data);
}
output.push_back({ std::get<0>(Value),output_temporary });
combinedCrossRel = std::min(combinedCrossRel, realCrossReliabilityOfSlaveAgent);
}
//combine cross reliabilites and input reliabilites of all slave agents
//NOTE: options would be multiply, average, AND (best to worst: )
//outputReliability = combinedInputRel * combinedCrossRel;
//outputReliability = (combinedInputRel + combinedCrossRel) / 2;
outputReliability = std::min(combinedInputRel, combinedCrossRel);
return { outputReliability,output };
}
/// This is the setter for CrossReliability Function
/// param A pointer to the Functional for the CrossReliability
void setFunction(CrossReliability<StateType, ReliabilityType>* CrossReliability)
{
this->CrossReliability = CrossReliability;
}
/// This is the setter for CrossConfidence Function
/// param A pointer to the Functional for the CrossConfidence
void setFunction(CrossConfidence <StateType, ReliabilityType>* CrossConfidence)
{
this->CrossConfidence = CrossConfidence;
}
/// deletes all given pointers
~HighLevel()
{
delete CrossReliability;
CrossConfidence = nullptr;
delete CrossConfidence;
CrossConfidence = nullptr;
}
private:
CrossReliability<StateType, ReliabilityType>* CrossReliability = nullptr;
CrossConfidence <StateType, ReliabilityType>* CrossConfidence = nullptr;
};
} // namespace agent
}// namespace rosa
#endif // !ROSA_AGENT_RELIABILITY_H
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Fri, Jul 4, 5:36 AM (5 h, 43 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
157474
Default Alt Text
(36 KB)
Attached To
Mode
R20 SoC_Rosa_repo
Attached
Detach File
Event Timeline
Log In to Comment