Page MenuHomePhorge

No OneTemporary

Size
35 KB
Referenced Files
None
Subscribers
None
diff --git a/apps/ccam/ccam.cpp b/apps/ccam/ccam.cpp
index 19cf9f9..7ae44de 100644
--- a/apps/ccam/ccam.cpp
+++ b/apps/ccam/ccam.cpp
@@ -1,38 +1,58 @@
//===-- apps/ccam/ccam.cpp --------------------------------------*- C++ -*-===//
//
// The RoSA Framework -- Application CCAM
//
//===----------------------------------------------------------------------===//
///
/// \file apps/ccam/ccam.cpp
///
/// \author Maximilian Goetzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief The application CCAM implements the case study from the paper:
/// M. Goetzinger, N. TaheriNejad, H. A. Kholerdi, A. Jantsch, E. Willegger,
/// T. Glatzl, A.M. Rahmani, T.Sauter, P. Liljeberg: Model - Free Condition
/// Monitoring with Confidence
//===----------------------------------------------------------------------===//
+#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/SignalStateDetector.hpp"
#include <iostream>
int main(void) {
// Just some tests :D
std::vector vec = {7, 3, 5, 1, 9};
std::sort(vec.rbegin(), vec.rend());
// std::reverse(vec.begin(), vec.end());
for (auto it = vec.cbegin(); it != vec.cend(); ++it) {
std::cout << *it << ' ';
}
- // TODO: make signal state detector object
+ std::shared_ptr<rosa::agent::PartialFunction<float, float>> PartFunc(
+ new rosa::agent::PartialFunction<float, float>(
+ {
+ {{0.f, 3.f},
+ std::make_shared<rosa::agent::LinearFunction<float, float>>(
+ 0.f, 1.f / 3)},
+ {{3.f, 6.f},
+ std::make_shared<rosa::agent::LinearFunction<float, float>>(
+ 1.f, 0.f)},
+ {{6.f, 9.f},
+ std::make_shared<rosa::agent::LinearFunction<float, float>>(
+ 3.f, -1.f / 3)},
+ },
+ 0));
+
+ std::shared_ptr<rosa::agent::StepFunction<float, float>> StepFunc(
+ new rosa::agent::StepFunction<float, float>(1 / 10));
+
+ rosa::agent::SignalStateDetector<float, float> TestSigSD(
+ PartFunc, PartFunc, StepFunc, StepFunc, PartFunc, PartFunc, 10, 5, 1000);
return 0;
}
diff --git a/include/rosa/agent/SignalState.hpp b/include/rosa/agent/SignalState.hpp
index 85b8fff..77d575c 100644
--- a/include/rosa/agent/SignalState.hpp
+++ b/include/rosa/agent/SignalState.hpp
@@ -1,370 +1,415 @@
//===-- rosa/agent/State.hpp ----------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/State.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *state* *functionality*.
///
//===----------------------------------------------------------------------===//
// TODO: change to signal state
#ifndef ROSA_AGENT_STATE_HPP
#define ROSA_AGENT_STATE_HPP
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/History.hpp"
#include <cstdarg>
namespace rosa {
namespace agent {
/// State conditions defining how the condition of a \c rosa::agent::State is
/// saved in \c rosa::agent::StateInformation.
enum class VariableStateCondition {
STABLE, ///< The state is stable
DRIFTING, ///< The state is drifting
UNKNOWN ///< The state is unknown
};
template <typename CONFDATATYPE> struct StateInformation {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence type is not to arithmetic");
/// The state ID saved as an unsigned integer number
unsigned int StateID;
/// The StateConfidence shows the overall confidence value of the state.
CONFDATATYPE StateConfidence;
/// The VariableStateCondition shows the condition of a state (stable or
/// drifting)
VariableStateCondition VariableStateCondition;
/// The StateIsValid shows whether a state is valid or invalid. In this
/// context, valid means that enough samples which are in close proximitry
/// have been inserted into the state.
bool StateIsValid;
/// The StateJustGotValid shows whether a state got valid (toggled from
/// invalid to valid) during the current inserted sample.
bool StateJustGotValid;
/// The StateIsValidAfterReentrance shows whether a state is valid after the
/// variable changed back to it again.
bool StateIsValidAfterReentrance;
};
// @Benedikt: now there are 4 datatypes. Do you think we can merge PROCDATATYPE
// and PROCDATATYPE somehow?
/// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of
/// data in that the confidence values are given, \param PROCDATATYPE type of
/// the relative distance and the type of data in which DABs are saved.
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE>
class State : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence data type is not to arithmetic");
STATIC_ASSERT(
(std::is_arithmetic<PROCDATATYPE>::value),
"process data type (DAB and Relative Distance) is not to arithmetic");
private:
// For the convinience to write a shorter data type name
using PartFuncPointer =
std::shared_ptr<PartialFunction<INDATATYPE, CONFDATATYPE>>;
using StepFuncPointer =
std::shared_ptr<StepFunction<INDATATYPE, CONFDATATYPE>>;
/// StateInfo is a struct StateInformation that contains information about the
/// current state.
StateInformation<CONFDATATYPE> StateInfo;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history.
PartFuncPointer FuzzyFunctionSampleMatches;
- /// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
+
+ /// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history.
PartFuncPointer FuzzyFunctionSampleMismatches;
- /// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
+
+ /// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
StepFuncPointer FuzzyFunctionNumOfSamplesMatches;
- /// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
- /// confidence how many samples from the sampe history mismatch the new
+
+ /// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
+ /// the confidence how many samples from the sampe history mismatch the new
/// sample.
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSignalIsDrifting is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting.
PartFuncPointer FuzzyFunctionSignalIsDrifting;
+
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is stable (not drifting).
PartFuncPointer FuzzyFunctionSignalIsStable;
/// SampleHistory is a history in that the last sample values are stored.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO> SampleHistory;
/// DAB is a (usually) small history of the last sample values of which a
/// average is calculated if the DAB is full.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::SRWF> DAB;
/// DABHistory is a history in that the last DABs (to be exact, the averages
/// of the last DABs) are stored.
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::LIFO> DABHistory;
/// The StateIsValid shows whether a state is valid or invalid. In this
/// context, valid means that enough samples which are in close proximitry
/// have been inserted into the state.
bool StateIsValid;
/// The StateIsValidAfterReentrance shows whether a state is valid after the
/// variable changed back to it again.
bool StateIsValidAfterReentrance;
public:
+ // @Maxi doxygen per default doesn't display private attributes of a class. So
+ // I copied them to the constructor. So the user has more information.
/// Creates an instance by setting all parameters
+ /// \param StateID The Id of the Stateinfo \c StateInformation .
+ ///
+ /// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
+ /// fuzzy function that gives the confidence how good the new sample matches
+ /// another sample in the sample history.
+ ///
+ /// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
+ /// the fuzzy function that gives the confidence how bad the new sample
+ /// matches another sample in the sample history.
+ ///
+ /// \param FuzzyFunctionNumOfSamplesMatches The
+ /// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
+ /// confidence how many samples from the sampe history match the new sample.
+ ///
+ /// \param FuzzyFunctionNumOfSamplesMismatches The
+ /// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
+ /// confidence how many samples from the sampe history mismatch the new
+ /// sample.
+ ///
+ /// \param FuzzyFunctionSignalIsDrifting The FuzzyFunctionSignalIsDrifting is
+ /// the fuzzy function that gives the confidence how likely it is that the
+ /// signal (resp. the state of a signal) is drifting.
+ ///
+ /// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
+ /// fuzzy function that gives the confidence how likely it is that the signal
+ /// (resp. the state of a signal) is stable (not drifting).
+ ///
+ /// \param SampleHistorySize Size of the Sample History \c
+ /// DynamicLengthHistory . SampleHistory is a history in that the last sample
+ /// values are stored.
+ ///
+ /// \param DABSize Size of DAB \c DynamicLengthHistory . DAB is a (usually)
+ /// small history of the last sample values of which a average is calculated
+ /// if the DAB is full.
+ ///
+ /// \param DABHistorySize Size of the DABHistory \c DynamicLengthHistory .
+ /// DABHistory is a history in that the last DABs (to be exact, the averages
+ /// of the last DABs) are stored.
+ ///
State(unsigned int StateID, PartFuncPointer FuzzyFunctionSampleMatches,
PartFuncPointer FuzzyFunctionSampleMismatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches,
PartFuncPointer FuzzyFunctionSignalIsDrifting,
PartFuncPointer FuzzyFunctionSignalIsStable,
- unsigned int sampleHistorySize, unsigned int DABSize,
+ unsigned int SampleHistorySize, unsigned int DABSize,
unsigned int DABHistorySize) noexcept
: StateInfo(StateID, 0, VariableStateCondition::UNKNOWN, false, false),
- SampleHistory(sampleHistorySize), DAB(DABSize),
+ SampleHistory(SampleHistorySize), DAB(DABSize),
DABHistory(DABHistorySize),
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSignalIsDrifting(FuzzyFunctionSignalIsDrifting),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable) {}
/// Destroys \p this object.
~State(void) = default;
void leaveState(void) noexcept {
DAB.clear();
StateIsValidAfterReentrance = false;
}
StateInformation<CONFDATATYPE> insertSample(INDATATYPE Sample) noexcept {
SampleHistory.addEntry(Sample);
DAB.addEntry(Sample);
if (DAB.full()) {
PROCDATATYPE AvgOfDAB = DAB.template average<PROCDATATYPE>();
DABHistory.addEntry(AvgOfDAB);
DAB.clear();
}
FuzzyFunctionNumOfSamplesMatches->setRightLimit(
SampleHistory->numberOfEntries());
FuzzyFunctionNumOfSamplesMismatches->setRightLimit(
SampleHistory->numberOfEntries());
// TODO: calculate whether state is valid and properly set StateIsValid,
// StateJustGotValid, StateIsValidAfterReentrance
// TODO: check actual state whether it drifts
// TODO: write in StateInfo
return StateInfo;
}
/// Gives the confidence how likely the new sample matches the state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is matching the state.
CONFDATATYPE
confSampleMatchesState(INDATATYPE Sample) noexcept {
CONFDATATYPE ConfidenceOfBestCase = 0;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory;
// calculate distances to all history samples
for (auto &HistorySample : SampleHistory) {
PROCDATATYPE RelativeDistance = relativeDistance(Sample, HistorySample);
RelativeDistanceHistory.addEntry(RelativeDistance);
}
// sort all calculated distances so that the lowest distance (will get the
// highest confidence) is at the beginning.
RelativeDistanceHistory.sortAscending();
CONFDATATYPE ConfidenceOfWorstFittingSample = 1;
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
// TODO (future): to accelerate -> don't start with 1 start with some higher
// number because a low number (i guess lower than 5) will definetely lead
// to a low confidence. except the history is not full.
for (unsigned int Case = 0;
Case < RelativeDistanceHistory.numberOfEntries(); Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
// TODO (future) if fuzzy is defined in a way that infinity is not 0 it
// would be a problem
//@benedikt: check if your partialfunctions can take infinity as
// argument
ConfidenceFromRelativeDistance = 0;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfWorstFittingSample = fuzzyAND(ConfidenceOfWorstFittingSample,
ConfidenceFromRelativeDistance);
// @benedikt: change old-style cast to one of these: reinterpret_cast,
// static_cast, dynamic_cast or const_cast. Which should I use? Or should
// the HistSampleCounter variable already be CONFDATATYPE type?
ConfidenceOfBestCase = fuzzyOR(
ConfidenceOfBestCase,
fuzzyAND(ConfidenceOfWorstFittingSample,
FuzzyFunctionNumOfSamplesMatches((CONFDATATYPE)Case + 1)));
}
return ConfidenceOfBestCase;
}
/// Gives the confidence how likely the new sample mismatches the state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is mismatching the state.
CONFDATATYPE
confSampleMismatchesState(INDATATYPE Sample) noexcept {
float ConfidenceOfWorstCase = 1;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory;
// calculate distances to all history samples
for (auto &HistorySample : SampleHistory) {
RelativeDistanceHistory.addEntry(relativeDistance(Sample, HistorySample));
}
// sort all calculated distances so that the highest distance (will get the
// lowest confidence) is at the beginning.
RelativeDistanceHistory.sortDescending();
CONFDATATYPE ConfidenceOfBestFittingSample = 0;
unsigned int Case = 1;
// Case 1 means that one (the worst fitting) sample of the history is
// compared with the new sample. Case 2 means the two worst history samples
// are compared with the new sample. And so on.
// TODO (future): to accelerate -> don't go until end. Confidences will only
// get higher. See comment in "CONFDATATYPE
// confSampleMatchesState(INDATATYPE Sample)".
for (unsigned int Case = 0;
Case < RelativeDistanceHistory.numberOfEntries(); Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
ConfidenceFromRelativeDistance = 1;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMismatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfBestFittingSample = fuzzyOR(ConfidenceOfBestFittingSample,
ConfidenceFromRelativeDistance);
// @benedikt: change old-style cast to one of these: reinterpret_cast,
// static_cast, dynamic_cast or const_cast. Which should I use? Or should
// the HistSampleCounter variable already be CONFDATATYPE type?
ConfidenceOfWorstCase = fuzzyAND(
ConfidenceOfWorstCase,
fuzzyOR(ConfidenceOfBestFittingSample,
FuzzyFunctionNumOfSamplesMismatches((CONFDATATYPE)Case + 1)));
}
return ConfidenceOfWorstCase;
}
/// Gives information about the current state.
///
/// \return a struct StateInformation that contains information about the
/// current state.
StateInformation<CONFDATATYPE> stateInformation(void) noexcept {
return StateInfo;
}
private:
// @David: Where should these next functions (fuzzyAND, fuzzyOR,
// relativeDistance) moved to (I guess we will use them also somewhere else)?
// copied from the internet and adapted
// (https://stackoverflow.com/questions/1657883/variable-number-of-arguments-in-c)
CONFDATATYPE fuzzyAND(int n_args, ...) noexcept {
va_list ap;
va_start(ap, n_args);
CONFDATATYPE min = va_arg(ap, CONFDATATYPE);
for (int i = 2; i <= n_args; i++) {
CONFDATATYPE a = va_arg(ap, CONFDATATYPE);
min = std::min(a, min);
}
va_end(ap);
return min;
}
// copied from the internet
// (https://stackoverflow.com/questions/1657883/variable-number-of-arguments-in-c)
CONFDATATYPE fuzzyOR(int n_args, ...) noexcept {
va_list ap;
va_start(ap, n_args);
CONFDATATYPE max = va_arg(ap, CONFDATATYPE);
for (int i = 2; i <= n_args; i++) {
CONFDATATYPE a = va_arg(ap, CONFDATATYPE);
std::max(a, max);
}
va_end(ap);
return max;
}
PROCDATATYPE relativeDistance(INDATATYPE SampleValue,
INDATATYPE HistoryValue) noexcept {
PROCDATATYPE Dist = HistoryValue - SampleValue;
if (Dist == 0) {
return 0;
} else {
Dist = Dist / SampleValue;
if (Dist < 0) {
//@benedikt: I guess this multiplication here should not be done because
// it could be that the distance fuzzy functions are not symetrical
//(negative and positive side)
Dist = Dist * (-1);
}
return (Dist);
}
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_STATE_HPP
diff --git a/include/rosa/agent/SignalStateDetector.hpp b/include/rosa/agent/SignalStateDetector.hpp
index 460ca67..8c77758 100644
--- a/include/rosa/agent/SignalStateDetector.hpp
+++ b/include/rosa/agent/SignalStateDetector.hpp
@@ -1,288 +1,402 @@
//===-- rosa/agent/StateDetector.hpp ----------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/StateDetector.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *state detector* *functionality*.
///
//===----------------------------------------------------------------------===//
+<<<<<<< HEAD
+=======
+// TODO: noexcept
+
+>>>>>>> 13709b6ff470b4e2a4c18bdff670dfe32eca69c7
#ifndef ROSA_AGENT_STATEDETECTOR_HPP
#define ROSA_AGENT_STATEDETECTOR_HPP
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/SignalState.hpp"
#include <vector>
// TODO: change everything from state to signal state
namespace rosa {
namespace agent {
/// Implements \c rosa::agent::StateDetector as a functionality that detects
/// states given on input samples.
///
/// \note This implementation is supposed to be used for samples of an
/// arithmetic type.
///
/// \tparam INDATATYPE is the type of input data, \tparam CONFDATATYPE is type
/// of
/// data in that the confidence values are given
template <typename INDATATYPE, typename CONFDATATYPE>
class SignalStateDetector : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence abstraction type is not to arithmetic");
private:
// For the convinience to write a shorter data type name
using PartFuncPointer =
std::shared_ptr<PartialFunction<INDATATYPE, CONFDATATYPE>>;
using StepFuncPointer =
std::shared_ptr<StepFunction<INDATATYPE, CONFDATATYPE>>;
using StatePtr = std::shared_ptr<StateInformation<CONFDATATYPE>>;
using StateInfoPtr = std::shared_ptr<StateInformation<CONFDATATYPE>>;
/// The NextStateID is a counter variable which stores the ID which the next
/// state shall have.
unsigned int NextStateID;
/// The SignalStateHasChanged is a flag that show whether a state change has
/// happened.
bool SignalStateHasChanged;
/// The CurrentState is a pointer to the (saved) state in which the actual
/// variable (signal) of the observed system is.
StatePtr CurrentState;
+
/// The DetectedStates is vector in that all detected states are saved.
// TODO: make it to history
std::vector<StatePtr> DetectedStates;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history.
PartFuncPointer FuzzyFunctionSampleMatches;
- /// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
+
+ /// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history.
PartFuncPointer FuzzyFunctionSampleMismatches;
- /// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
+
+ /// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
StepFuncPointer FuzzyFunctionNumOfSamplesMatches;
- /// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
- /// confidence how many samples from the sampe history mismatch the new
+
+ /// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
+ /// the confidence how many samples from the sampe history mismatch the new
/// sample.
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSignalIsDrifting is the fuzzy function that gives the
/// confidence how likely it is that the signal is drifting.
PartFuncPointer FuzzyFunctionSignalIsDrifting;
+
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal is stable (not drifting).
PartFuncPointer FuzzyFunctionSignalIsStable;
/// SampleHistorySize is the (maximum) size of the sample history.
unsigned int SampleHistorySize;
/// DABSize the size of a DAB (Discrete Average Block).
unsigned int DABSize;
/// DABHistorySize is the (maximum) size of the DAB history.
unsigned int DABHistorySize;
public:
/// Creates an instance by setting all parameters
+<<<<<<< HEAD
SignalStateDetector(PartFuncPointer FuzzyFunctionSampleMatches,
PartFuncPointer FuzzyFunctionSampleMismatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches,
PartFuncPointer FuzzyFunctionSignalIsDrifting,
PartFuncPointer FuzzyFunctionSignalIsStable,
unsigned int SampleHistorySize, unsigned int DABSize,
unsigned int DABHistorySize) noexcept
: NextStateID(1), SignalStateHasChanged(false), CurrentState(NULL),
+=======
+ /// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
+ /// fuzzy function that gives the confidence how good the new sample matches
+ /// another sample in the sample history.
+ ///
+ /// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
+ /// the fuzzy function that gives the confidence how bad the new sample
+ /// matches another sample in the sample history.
+ ///
+ /// \param FuzzyFunctionNumOfSamplesMatches The
+ /// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
+ /// confidence how many samples from the sampe history match the new sample.
+ ///
+ /// \param FuzzyFunctionNumOfSamplesMismatches The
+ /// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
+ /// confidence how many samples from the sampe history mismatch the new
+ /// sample.
+ ///
+ /// \param FuzzyFunctionSignalIsDrifting The FuzzyFunctionSignalIsDrifting is
+ /// the fuzzy function that gives the confidence how likely it is that the
+ /// signal (resp. the state of a signal) is drifting.
+ ///
+ /// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
+ /// fuzzy function that gives the confidence how likely it is that the signal
+ /// (resp. the state of a signal) is stable (not drifting).
+ ///
+ /// \param SampleHistorySize Sets the History size which will be used by \c
+ /// State .
+ ///
+ /// \param DABSize Sets the DAB size which will be used by \c State .
+ ///
+ /// \param DABHistorySize Sets the size which will be used by \c State .
+ ///
+ StateDetector(PartFuncPointer FuzzyFunctionSampleMatches,
+ PartFuncPointer FuzzyFunctionSampleMismatches,
+ StepFuncPointer FuzzyFunctionNumOfSamplesMatches,
+ StepFuncPointer FuzzyFunctionNumOfSamplesMismatches,
+ PartFuncPointer FuzzyFunctionSignalIsDrifting,
+ PartFuncPointer FuzzyFunctionSignalIsStable,
+ unsigned int SampleHistorySize, unsigned int DABSize,
+ unsigned int DABHistorySize) noexcept
+ : NextStateID(1), StateHasChanged(false), CurrentState(NULL),
+>>>>>>> 13709b6ff470b4e2a4c18bdff670dfe32eca69c7
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSignalIsDrifting(FuzzyFunctionSignalIsDrifting),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable),
SampleHistorySize(SampleHistorySize), DABSize(DABSize),
DABHistorySize(DABHistorySize) {}
/// Destroys \p this object.
~SignalStateDetector(void) = default;
/// Detects a signal state to which the new sample belongs or create a new
/// state if
/// the new sample does not match to any of the saved states.
///
/// \param Sample is the actual sample of the observed signal.
///
+<<<<<<< HEAD
/// \return the signal state ID as unsigend integer type. State IDs start with
/// number
+=======
+ /// \return the state ID as unsigned integer type. State IDs start with number
+>>>>>>> 13709b6ff470b4e2a4c18bdff670dfe32eca69c7
/// 1; that means if there is no current state, the return value is 0.
unsigned int detectSignalState(INDATATYPE Sample) noexcept {
StateInfoPtr StateInfo = detectState__debug(Sample);
return StateInfo->StateID;
}
/// Gives information about the current state.
///
/// \return a the Signal State ID (as unsigned integer type) of the current
/// state.
/// State IDs start with number 1; that means if there is no current state,
/// the return value is 0.
unsigned int currentSignalStateInformation(void) noexcept {
StateInfoPtr StateInfo = currentStateInformation__debug();
if (StateInfo) {
return StateInfo->StateID;
} else {
return 0;
}
}
/// Gives information whether a state change has happened or not.
///
/// \return true if a state change has happened, and false if not.
bool SignallStateHasChanged(void) noexcept { return SignallStateHasChanged; }
private:
+<<<<<<< HEAD
// TODO: change exlaination! it is not totally right
+=======
+ //@maxi \param is there to Document a specific parameter of a method/function
+ // this method doesn't have any parameters.
+>>>>>>> 13709b6ff470b4e2a4c18bdff670dfe32eca69c7
/// Creates a new state and adds this state to the state vector in which all
/// known states are saved.
///
/// \param SampleHistorySize the (maximum) size of the sample history.
/// \param DABSize the size of a DAB.
/// \param DABHistorySize the (maximum) size of the DAB history.
/// \param FuzzyFunctionSampleMatches the
/// \param FuzzyFunctionSampleMismatches
/// \param FuzzyFunctionNumOfSamplesMatches
/// \param FuzzyFunctionNumOfSamplesMismatches
///
+<<<<<<< HEAD
/// \return the new created state or NULL if no state could be created.
StatePtr createNewState(void) noexcept {
+=======
+ /// \return a pointer to the newly created state or NULL if no state could be
+ /// created.
+ StatePtr createNewState(void) {
+>>>>>>> 13709b6ff470b4e2a4c18bdff670dfe32eca69c7
StatePtr S = new (std::nothrow) State(
NextStateID, SampleHistorySize, DABSize, DABHistorySize,
FuzzyFunctionSampleMatches, FuzzyFunctionSampleMismatches,
FuzzyFunctionNumOfSamplesMatches, FuzzyFunctionNumOfSamplesMismatches);
// @benedikt: todo: assert in history, which checks if push_back worked
DetectedStates.push_back(S);
return S;
}
#ifdef STATEDETECTORDEBUGMODE
public:
#else
private:
#endif // STATEDETECTORDEBUGMODE
+ // @maxi is this a debug method or is it a method that will be used and
+ // you simply want to have access to it in debug mode?
+ // debug -> extend the preprocessor around the function
+ // access -> remove the __debug from the name ( it is confusing)
+ // if you want to have it marked as a debug method for auto
+ // complete you can do something like this :
+ //
+ //#ifdef STATEDETECTORDEBUGMODE
+ // public:
+ // StateInfoPtr debug_detectState(INDATATYPE Sample) {
+ // return detectState(Sample);
+ // }
+ //#endif // STATEDETECTORDEBUGMODE
+ // private :
+ // StateInfoPtr detectState(INDATATYPE Sample) { ...
+ //
+
/// Detects the state to which the new sample belongs or create a new state if
/// the new sample does not match to any of the saved states.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the information of the actual state (state ID and other
/// parameters).
+<<<<<<< HEAD
StateInfoPtr detectState__debug(INDATATYPE Sample) noexcept {
+=======
+ // TODO: return something const.. cannot remember exactly (ask benedikt)
+ //
+ // maby: you are returning a pointer to the state info so who ever has that
+ // pointer can actually change the information if you want to return only the
+ // *current info* return a copy of the state info
+ // like this:
+ //
+ // StateInfoPtr detectState__debug(INDATATYPE Sample) ->
+ // StateInformation<CONFTYPE> detectState__debug(INDATATYPE Sample)
+ //
+ // return CurrentState->stateInformation(); ->
+ // return *(CurrentState->stateInformation());
+ StateInfoPtr detectState__debug(INDATATYPE Sample) {
+>>>>>>> 13709b6ff470b4e2a4c18bdff670dfe32eca69c7
if (!CurrentState) {
ASSERT(DetectedStates.empty());
StatePtr S = createNewState();
CurrentState = S;
} else {
CONFDATATYPE ConfidenceSampleMatchesState =
CurrentState->confSampleMatchesState(Sample);
CONFDATATYPE ConfidenceSampleMismatchesState =
CurrentState->confSampleMismatchesState(Sample);
if (ConfidenceSampleMatchesState > ConfidenceSampleMismatchesState) {
SignalStateHasChanged = false;
} else {
SignalStateHasChanged = true;
if (CurrentState->stateInformation()->StateIsValid) {
CurrentState->leaveState();
} else {
DetectedStates.erase(std::find(DetectedStates.begin(),
DetectedStates.end(), CurrentState));
}
// TODO (future): additionally save averages to enable fast
// iteration through recorded state vector (maybe sort vector based on
// these average values)
CurrentState = nullptr;
for (auto &SavedState : DetectedStates) {
if (SavedState != CurrentState) {
CONFDATATYPE ConfidenceSampleMatchesState =
SavedState->confSampleMatchesState(Sample);
CONFDATATYPE ConfidenceSampleMismatchesState =
SavedState->confSampleMismatchesState(Sample);
if (ConfidenceSampleMatchesState >
ConfidenceSampleMismatchesState) {
// TODO (future): maybe it would be better to compare
// ConfidenceSampleMatchesState of all states in the vector in
// order to find the best matching state.
CurrentState = SavedState;
break;
}
}
}
if (!CurrentState) {
StatePtr S = createNewState();
CurrentState = S;
}
}
}
+<<<<<<< HEAD
StateInformation<CONFDATATYPE> StateInfo =
CurrentState->insertSample(Sample);
+=======
+ // State::insertSample() current return type: void
+ StateInfoPtr StateInfo = CurrentState->insertSample(Sample);
+>>>>>>> 13709b6ff470b4e2a4c18bdff670dfe32eca69c7
if (StateInfo.StateJustGotValid) {
NextStateID++;
}
return StateInfo;
}
#ifdef STATEDETECTORDEBUGMODE
public:
#else
private:
#endif // STATEDETECTORDEBUGMODE
+ //@maxi here again are you sure you want to return the pointer?
/// Gives information about the current state.
///
+<<<<<<< HEAD
/// \return a struct StateInformation that contains information about the
/// current state or NULL if no current state exists.
StateInformation<CONFDATATYPE> currentStateInformation__debug(void) noexcept {
+=======
+ /// \return a pointer to a struct StateInformation that contains information
+ /// about the current state or NULL if no current state exists.
+ StateInfoPtr currentStateInformation__debug(void) {
+>>>>>>> 13709b6ff470b4e2a4c18bdff670dfe32eca69c7
if (CurrentState) {
return CurrentState->stateInformation();
} else {
return NULL;
}
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_STATEDETECTOR_HPP

File Metadata

Mime Type
text/x-diff
Expires
Thu, Jul 3, 10:20 PM (9 h, 8 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
157374
Default Alt Text
(35 KB)

Event Timeline