Page Menu
Home
Phorge
Search
Configure Global Search
Log In
Files
F386572
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Size
45 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/apps/ccam/ccam.cpp b/apps/ccam/ccam.cpp
index e1668e6..983a106 100644
--- a/apps/ccam/ccam.cpp
+++ b/apps/ccam/ccam.cpp
@@ -1,383 +1,386 @@
//===-- apps/ccam/ccam.cpp --------------------------------------*- C++ -*-===//
//
// The RoSA Framework -- Application CCAM
//
//===----------------------------------------------------------------------===//
///
/// \file apps/ccam/ccam.cpp
///
/// \author Maximilian Goetzinger (maximilian.goetzinger@tuwien.ac.at)
/// \author Benedikt Tutzer (benedikt.tutzer@tuwien.ac.at)
///
/// \date 2019
///
/// \brief The application CCAM implements the case study from the paper:
/// M. Goetzinger, N. TaheriNejad, H. A. Kholerdi, A. Jantsch, E. Willegger,
/// T. Glatzl, A.M. Rahmani, T.Sauter, P. Liljeberg: Model - Free Condition
/// Monitoring with Confidence
//===----------------------------------------------------------------------===//
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Confidence.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include <iostream>
#include "rosa/config/version.h"
#include "rosa/agent/SignalStateDetector.hpp"
#include "rosa/agent/SystemStateDetector.hpp"
#include "rosa/deluxe/DeluxeContext.hpp"
#include "rosa/support/csv/CSVReader.hpp"
#include "rosa/support/csv/CSVWriter.hpp"
#include <fstream>
#include <limits>
#include <memory>
#include <streambuf>
#include "configuration.h"
using namespace rosa;
using namespace rosa::agent;
using namespace rosa::deluxe;
using namespace rosa::terminal;
const std::string AppName = "CCAM";
//@maxi I don't know what you want to do but if you want to have the agent be a
//"lowlevel" agent which gives its master a tuple with all of that info you have
// to do it as it is done in the #else. To be fair I don't know if the return
// SignalStateTuple(); is allowed
+/*
#if false
using SignalStateTuple =
std::tuple<Optional<float>, Optional<unsigned int>, Optional<float>,
Optional<uint8_t>, Optional<unsigned int>, Optional<bool>,
Optional<bool>, Optional<bool>, Optional<bool>>;
AgentHandle createSignalStateDetectorAgent(
std::unique_ptr<DeluxeContext> &C, const std::string &Name,
std::shared_ptr<
SignalStateDetector<float, float, float, HistoryPolicy::FIFO>>
SigSD) {
(void)SigSD;
using Handler = std::function<SignalStateTuple(std::pair<float, bool>)>;
return C->createAgent(
Name,
Handler([&Name, &SigSD](std::pair<float, bool> I) -> SignalStateTuple {
LOG_INFO_STREAM << "\n******\n"
<< Name << " " << (I.second ? "<New>" : "<Old>")
<< " value: " << I.first << "\n******\n";
auto StateInfo = SigSD->detectSignalState(I.first);
if (I.second)
return std::make_tuple(
Optional<float>(I.first),
Optional<unsigned int>(StateInfo.SignalStateID),
Optional<float>(StateInfo.SignalStateConfidence),
Optional<uint8_t>(StateInfo.SignalStateCondition),
Optional<unsigned int>(
StateInfo.NumberOfInsertedSamplesAfterEntrance),
Optional<bool>(StateInfo.SignalStateIsValid),
Optional<bool>(StateInfo.SignalStateJustGotValid),
Optional<bool>(StateInfo.SignalStateIsValidAfterReentrance),
Optional<bool>(StateInfo.SignalIsStable));
return SignalStateTuple();
}));
}
#else
using tup = DeluxeTuple<float, unsigned int, float, uint8_t, unsigned int, bool,
bool, bool, bool>;
using SignalStateTuple = Optional<tup>;
AgentHandle createSignalStateDetectorAgent(
std::unique_ptr<DeluxeContext> &C, const std::string &Name,
std::shared_ptr<
SignalStateDetector<float, float, float, HistoryPolicy::FIFO>>
SigSD) {
(void)SigSD;
using Handler =
std::function<SignalStateTuple(std::pair<DeluxeTuple<float>, bool>)>;
return C->createAgent(
Name,
Handler([&Name, &SigSD](
std::pair<DeluxeTuple<float>, bool> I) -> SignalStateTuple {
LOG_INFO_STREAM << "\n******\n"
<< Name << " " << (I.second ? "<New>" : "<Old>")
<< " value: " << std::get<0>(I.first) << "\n******\n";
auto StateInfo = SigSD->detectSignalState(std::get<0>(I.first));
if (I.second)
+
return {tup(
std::get<0>(I.first), StateInfo.SignalStateID,
StateInfo.SignalStateConfidence, StateInfo.SignalStateCondition,
StateInfo.NumberOfInsertedSamplesAfterEntrance,
StateInfo.SignalStateIsValid, StateInfo.SignalStateJustGotValid,
StateInfo.SignalStateIsValidAfterReentrance,
StateInfo.SignalIsStable)};
return SignalStateTuple();
}));
}
#endif
+*/
int main(int argc, char **argv) {
LOG_INFO_STREAM << '\n'
<< library_string() << " -- " << Color::Red << AppName
<< "app" << Color::Default << '\n';
if (argc < 2) {
LOG_ERROR("Specify config File!\nUsage:\n\tccam config.json");
return 1;
}
std::string ConfigPath = argv[1];
if (!readConfigFile(ConfigPath)) {
LOG_ERROR_STREAM << "Could not read config from \"" << ConfigPath << "\"\n";
return 2;
}
std::string InputFilePath, OutputFilePath;
LOG_INFO("Creating Context");
std::unique_ptr<DeluxeContext> C = DeluxeContext::create(AppName);
LOG_INFO("Creating sensors, SignalStateDetector functionalities and their "
"Abstractions.");
std::vector<AgentHandle> Sensors;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMismatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsStableFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsDriftingFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMatchFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMismatchFunctions;
std::vector<SignalStateDetector<float, float, float, HistoryPolicy::FIFO>>
SignalStateDetectors;
std::vector<AgentHandle> SignalStateDetectorAgents;
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
//
// Create deluxe sensors.
//
Sensors.emplace_back(C->createSensor<float>(SignalConfiguration.Name));
//
// Create functionalities for SignalStateDetector.
//
SampleMatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 0.f,
-SignalConfiguration.InnerBound, 1.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 1.f,
SignalConfiguration.OuterBound, 0.f)},
},
0));
SampleMismatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 1.f,
-SignalConfiguration.InnerBound, 0.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 0.f,
SignalConfiguration.OuterBound, 1.f)},
},
1));
SignalIsStableFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBoundDrift,
-SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBoundDrift, 0.f,
-SignalConfiguration.InnerBoundDrift, 1.f)},
{{-SignalConfiguration.InnerBoundDrift,
SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBoundDrift,
SignalConfiguration.OuterBoundDrift},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBoundDrift, 1.f,
SignalConfiguration.OuterBoundDrift, 0.f)},
},
0));
SignalIsDriftingFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBoundDrift,
-SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBoundDrift, 1.f,
-SignalConfiguration.InnerBoundDrift, 0.f)},
{{-SignalConfiguration.InnerBoundDrift,
SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBoundDrift,
SignalConfiguration.OuterBoundDrift},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBoundDrift, 0.f,
SignalConfiguration.OuterBoundDrift, 1.f)},
},
1));
NumOfSamplesMatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp));
NumOfSamplesMismatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown));
//
// Create SignalStateDetector functionality
//
SignalStateDetectors.emplace_back(
std::numeric_limits<int>::max(), SampleMatchesFunctions.back(),
SampleMismatchesFunctions.back(), NumOfSamplesMatchFunctions.back(),
NumOfSamplesMismatchFunctions.back(), SignalIsDriftingFunctions.back(),
SignalIsStableFunctions.back(), SignalConfiguration.SampleHistorySize,
SignalConfiguration.DABSize, SignalConfiguration.DABHistorySize);
//
// Create low-level deluxe agents
//
// SignalStateDetectorAgents.push_back(createSignalStateDetectorAgent(
// C, SignalConfiguration.Name, SignalStateDetectors.back()));
//
// Connect sensors to low-level agents.
//
LOG_INFO("Connect sensors to their corresponding low-level agents.");
C->connectSensor(SignalStateDetectorAgents.back(), 0, Sensors.back(),
"HR Sensor Channel");
}
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 0.f, AppConfig.BrokenCounter, 1.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(1.f, 0.f)}},
0.f));
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 1.f, AppConfig.BrokenCounter, 0.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(0.f, 0.f)}},
1.f));
std::shared_ptr<
- SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO, 5, 5>>
+ SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO>>
SystemStateDetectorF(
- new SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO, 5,
- 5>(std::numeric_limits<uint32_t>::max(),
- BrokenDelayFunction, OkDelayFunction));
+ new SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO>(
+ std::numeric_limits<uint32_t>::max(), BrokenDelayFunction,
+ OkDelayFunction));
//
// Create a high-level deluxe agent.
//
LOG_INFO("Create high-level agent.");
// The new agent logs its input values and results in the the sum of them.
/** AgentHandle BodyAgent = C->createAgent(
"Body Agent",
DeluxeAgent::D<uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
uint32_t>(
[](std::pair<uint32_t, bool> HR, std::pair<uint32_t, bool> BR,
std::pair<uint32_t, bool> SpO2, std::pair<uint32_t, bool> BPSys,
std::pair<uint32_t, bool> BodyTemp) -> Optional<uint32_t> {
LOG_INFO_STREAM << "\n*******\nBody Agent trigged with values:\n"
<< (HR.second ? "<New>" : "<Old>")
<< " HR warning score: " << HR.first << "\n"
<< (BR.second ? "<New>" : "<Old>")
<< " BR warning score: " << BR.first << "\n"
<< (SpO2.second ? "<New>" : "<Old>")
<< " SpO2 warning score: " << SpO2.first << "\n"
<< (BPSys.second ? "<New>" : "<Old>")
<< " BPSys warning score: " << BPSys.first << "\n"
<< (BodyTemp.second ? "<New>" : "<Old>")
<< " BodyTemp warning score: " << BodyTemp.first
<< "\n******\n";
return {HR.first + BR.first + SpO2.first + BPSys.first +
BodyTemp.first};
}));
*/
//
// Connect low-level agents to the high-level agent.
//
LOG_INFO("Connect low-level agents to the high-level agent.");
/// C->connectAgents(BodyAgent, 0, HRAgent, "HR Agent Channel");
//
// For simulation output, create a logger agent writing the output of the
// high-level agent into a CSV file.
//
LOG_INFO("Create a logger agent.");
// Create CSV writer.
/// std::ofstream ScoreCSV(ScoreCSVPath);
/// csv::CSVWriter<uint32_t> ScoreWriter(ScoreCSV);
// The agent writes each new input value into a CSV file and produces nothing.
/** AgentHandle LoggerAgent = C->createAgent(
"Logger Agent",
DeluxeAgent::D<unit_t, uint32_t>(
[&ScoreWriter](std::pair<uint32_t, bool> Score) -> Optional<unit_t> {
if (Score.second) {
// The state of \p ScoreWriter is not checked, expecting good.
ScoreWriter << Score.first;
}
return {};
}));
*/
//
// Connect the high-level agent to the logger agent.
//
LOG_INFO("Connect the high-level agent to the logger agent.");
/// C->connectAgents(LoggerAgent, 0, BodyAgent, "Body Agent Channel");
//
// Do simulation.
//
LOG_INFO("Setting up and performing simulation.");
//
// Initialize deluxe context for simulation.
//
// C->initializeSimulation();
//
// Open CSV files and register them for their corresponding sensors.
//
//
// Simulate.
//
/// C->simulate(NumberOfSimulationCycles);
return 0;
}
diff --git a/include/rosa/agent/SignalState.hpp b/include/rosa/agent/SignalState.hpp
index 9d7cba7..b6149a4 100644
--- a/include/rosa/agent/SignalState.hpp
+++ b/include/rosa/agent/SignalState.hpp
@@ -1,471 +1,470 @@
//===-- rosa/agent/SignalState.hpp ------------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SignalState.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *signal state* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SIGNALSTATE_HPP
#define ROSA_AGENT_SIGNALSTATE_HPP
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/History.hpp"
#include "rosa/support/math.hpp"
namespace rosa {
namespace agent {
/// Signal properties defining the properties of the signal which is monitored
/// by \c rosa::agent::SignalStateDetector and is saved in \c
/// rosa::agent::SignalStateInformation.
enum SignalProperties : uint8_t {
INPUT = 0, ///< The signal is an input signal
OUTPUT = 1 ///< The signal is an output signal
};
/// Signal state conditions defining how the condition of a \c
/// rosa::agent::SignalState is saved in \c rosa::agent::SignalStateInformation.
enum SignalStateCondition : uint8_t {
STABLE = 0, ///< The signal state is stable
DRIFTING = 1, ///< The signal state is drifting
UNKNOWN = 2 ///< The signal state is unknown
};
/// TODO: write description
template <typename CONFDATATYPE> struct SignalStateInformation {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence type is not to arithmetic");
/// The signal state ID saved as an uint32_teger number
uint32_t SignalStateID;
/// The SignalProperty saves whether the monitored signal is an input our
/// output signal.
SignalProperties SignalProperty;
/// The SignalStateConfidence shows the overall confidence value of the signal
/// state.
CONFDATATYPE SignalStateConfidence;
/// The SignalStateCondition shows the condition of a signal state (stable,
/// drifting, or unknown)
SignalStateCondition SignalStateCondition;
/// The SignalStateIsValid saves the number of samples which have been
/// inserted into the state after entering it.
uint32_t NumberOfInsertedSamplesAfterEntrance;
/// The SignalStateIsValid shows whether a signal state is valid or invalid.
/// In this context, valid means that enough samples which are in close
/// proximitry have been inserted into the signal state.
bool SignalStateIsValid;
/// The SignalStateJustGotValid shows whether a signal state got valid
/// (toggled from invalid to valid) during the current inserted sample.
bool SignalStateJustGotValid;
/// The SignalStateIsValidAfterReentrance shows whether a signal state is
/// valid after the variable changed back to it again.
bool SignalStateIsValidAfterReentrance;
};
/// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of
/// data in that the confidence values are given, \tparam PROCDATATYPE type of
/// the relative distance and the type of data in which DABs are saved.
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE>
class SignalState : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence data type is not to arithmetic");
STATIC_ASSERT(
(std::is_arithmetic<PROCDATATYPE>::value),
"process data type (DAB and Relative Distance) is not to arithmetic");
public:
// For the convinience to write a shorter data type name
using PartFuncReference = PartialFunction<INDATATYPE, CONFDATATYPE> &;
using StepFuncReference = StepFunction<INDATATYPE, CONFDATATYPE> &;
private:
/// SignalStateInfo is a struct SignalStateInformation that contains
/// information about the current state.
SignalStateInformation<CONFDATATYPE> SignalStateInfo;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMatches;
/// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMismatches;
/// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
StepFuncReference FuzzyFunctionNumOfSamplesMatches;
/// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
/// the confidence how many samples from the sampe history mismatch the new
/// sample.
StepFuncReference FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSignalIsDrifting is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting.
PartFuncReference FuzzyFunctionSignalIsDrifting;
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is stable (not drifting).
PartFuncReference FuzzyFunctionSignalIsStable;
/// SampleHistory is a history in that the last sample values are stored.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO> SampleHistory;
/// DAB is a (usually) small history of the last sample values of which a
/// average is calculated if the DAB is full.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::SRWF> DAB;
/// DABHistory is a history in that the last DABs (to be exact, the averages
/// of the last DABs) are stored.
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::LIFO> DABHistory;
/// LowestConfidenceMatchingHistory is a history in that the lowest confidence
/// for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
LowestConfidenceMatchingHistory;
/// HighestConfidenceMatchingHistory is a history in that the highest
/// confidence for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
HighestConfidenceMismatchingHistory;
public:
/// Creates an instance by setting all parameters
/// \param SignalStateID The Id of the SignalStateinfo \c
/// SignalStateInformation.
///
/// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
/// fuzzy function that gives the confidence how good the new sample matches
/// another sample in the sample history.
///
/// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
/// the fuzzy function that gives the confidence how bad the new sample
/// matches another sample in the sample history.
///
/// \param FuzzyFunctionNumOfSamplesMatches The
/// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
///
/// \param FuzzyFunctionNumOfSamplesMismatches The
/// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history mismatch the new
/// sample.
///
/// \param FuzzyFunctionSignalIsDrifting The FuzzyFunctionSignalIsDrifting is
/// the fuzzy function that gives the confidence how likely it is that the
/// signal (resp. the state of a signal) is drifting.
///
/// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
/// fuzzy function that gives the confidence how likely it is that the signal
/// (resp. the state of a signal) is stable (not drifting).
///
/// \param SampleHistorySize Size of the Sample History \c
/// DynamicLengthHistory . SampleHistory is a history in that the last sample
/// values are stored.
///
/// \param DABSize Size of DAB \c DynamicLengthHistory . DAB is a (usually)
/// small history of the last sample values of which a average is calculated
/// if the DAB is full.
///
/// \param DABHistorySize Size of the DABHistory \c DynamicLengthHistory .
/// DABHistory is a history in that the last DABs (to be exact, the averages
/// of the last DABs) are stored.
///
SignalState(uint32_t SignalStateID, SignalProperties SignalProperty,
uint32_t SampleHistorySize, uint32_t DABSize,
uint32_t DABHistorySize,
PartFuncReference FuzzyFunctionSampleMatches,
PartFuncReference FuzzyFunctionSampleMismatches,
StepFuncReference FuzzyFunctionNumOfSamplesMatches,
StepFuncReference FuzzyFunctionNumOfSamplesMismatches,
PartFuncReference FuzzyFunctionSignalIsDrifting,
PartFuncReference FuzzyFunctionSignalIsStable) noexcept
: SignalStateInfo{SignalStateID,
SignalProperty,
0,
SignalStateCondition::UNKNOWN,
0,
false,
false,
- true},
-
+ false},
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSignalIsDrifting(FuzzyFunctionSignalIsDrifting),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable),
SampleHistory(SampleHistorySize), DAB(DABSize),
DABHistory(DABHistorySize),
LowestConfidenceMatchingHistory(SampleHistorySize),
HighestConfidenceMismatchingHistory(SampleHistorySize) {}
/// Destroys \p this object.
~SignalState(void) = default;
void leaveSignalState(void) noexcept {
DAB.clear();
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance = 0;
SignalStateInfo.SignalStateIsValidAfterReentrance = false;
}
SignalStateInformation<CONFDATATYPE>
insertSample(INDATATYPE Sample) noexcept {
validateSignalState(Sample);
SampleHistory.addEntry(Sample);
DAB.addEntry(Sample);
if (DAB.full()) {
PROCDATATYPE AvgOfDAB = DAB.template average<PROCDATATYPE>();
DABHistory.addEntry(AvgOfDAB);
DAB.clear();
}
FuzzyFunctionNumOfSamplesMatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
FuzzyFunctionNumOfSamplesMismatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
checkSignalStability();
return SignalStateInfo;
}
/// Gives the confidence how likely the new sample matches the signal state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is matching the signal state.
CONFDATATYPE
confidenceSampleMatchesSignalState(INDATATYPE Sample) noexcept {
CONFDATATYPE ConfidenceOfBestCase = 0;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// calculate distances to all history samples
for (auto &HistorySample : SampleHistory) {
PROCDATATYPE RelativeDistance =
relativeDistance<INDATATYPE, PROCDATATYPE>(Sample, HistorySample);
RelativeDistanceHistory.addEntry(RelativeDistance);
}
// sort all calculated distances so that the lowest distance (will get the
// highest confidence) is at the beginning.
RelativeDistanceHistory.sortAscending();
CONFDATATYPE ConfidenceOfWorstFittingSample = 1;
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
// TODO (future): to accelerate . don't start with 1 start with some higher
// number because a low number (i guess lower than 5) will definetely lead
// to a low confidence. except the history is not full.
//
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
// TODO (future) if fuzzy is defined in a way that infinity is not 0 it
// would be a problem
ConfidenceFromRelativeDistance = 0;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfWorstFittingSample = fuzzyAND(ConfidenceOfWorstFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfBestCase =
fuzzyOR(ConfidenceOfBestCase,
fuzzyAND(ConfidenceOfWorstFittingSample,
FuzzyFunctionNumOfSamplesMatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
return ConfidenceOfBestCase;
}
/// Gives the confidence how likely the new sample mismatches the signal
/// state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is mismatching the signal state.
CONFDATATYPE
confidenceSampleMismatchesSignalState(INDATATYPE Sample) noexcept {
float ConfidenceOfWorstCase = 1;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// calculate distances to all history samples
for (auto &HistorySample : SampleHistory) {
RelativeDistanceHistory.addEntry(
relativeDistance<INDATATYPE, PROCDATATYPE>(Sample, HistorySample));
}
// sort all calculated distances so that the highest distance (will get the
// lowest confidence) is at the beginning.
RelativeDistanceHistory.sortDescending();
CONFDATATYPE ConfidenceOfBestFittingSample = 0;
// TODO (future): to accelerate -> don't go until end. Confidences will only
// get higher. See comment in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)".
//
// Case 1 means that one (the worst fitting) sample of the history is
// compared with the new sample. Case 2 means the two worst history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
ConfidenceFromRelativeDistance = 1;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMismatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfBestFittingSample = fuzzyOR(ConfidenceOfBestFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfWorstCase =
fuzzyAND(ConfidenceOfWorstCase,
fuzzyOR(ConfidenceOfBestFittingSample,
FuzzyFunctionNumOfSamplesMismatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
return ConfidenceOfWorstCase;
}
/// Gives information about the current signal state.
///
/// \return a struct SignalStateInformation that contains information about
/// the current signal state.
SignalStateInformation<CONFDATATYPE> signalStateInformation(void) noexcept {
return SignalStateInfo;
}
private:
void validateSignalState(INDATATYPE Sample) {
// TODO (future): WorstConfidenceDistance and BestConfidenceDistance could
// be set already in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)" and "CONFDATATYPE
// confidenceSampleMismatchesSignalState(INDATATYPE Sample)" when the new
// sample is compared to all history samples. This would save a lot time
// because the comparisons are done only once. However, it has to be asured
// that the these two functions are called before the insertation, and the
// FuzzyFunctions for validation and matching have to be the same!
CONFDATATYPE LowestConfidenceMatching = 1;
CONFDATATYPE HighestConfidenceMismatching = 0;
for (auto &HistorySample : SampleHistory) {
// TODO (future): think about using different fuzzy functions for
// validation and matching.
LowestConfidenceMatching = fuzzyAND(
LowestConfidenceMatching,
FuzzyFunctionSampleMatches(relativeDistance<INDATATYPE, PROCDATATYPE>(
Sample, HistorySample)));
HighestConfidenceMismatching =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionSampleMismatches(
relativeDistance<INDATATYPE, PROCDATATYPE>(
Sample, HistorySample)));
}
LowestConfidenceMatchingHistory.addEntry(LowestConfidenceMatching);
HighestConfidenceMismatchingHistory.addEntry(HighestConfidenceMismatching);
LowestConfidenceMatching = LowestConfidenceMatchingHistory.lowestEntry();
HighestConfidenceMismatching =
HighestConfidenceMismatchingHistory.highestEntry();
CONFDATATYPE ConfidenceSignalStateIsValid =
fuzzyAND(LowestConfidenceMatching,
FuzzyFunctionNumOfSamplesMatches(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
CONFDATATYPE ConfidenceSignalStateIsInvalid =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionNumOfSamplesMismatches(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
if (ConfidenceSignalStateIsValid > ConfidenceSignalStateIsInvalid) {
if (SignalStateInfo.SignalStateIsValid) {
SignalStateInfo.SignalStateJustGotValid = false;
} else {
SignalStateInfo.SignalStateJustGotValid = true;
}
SignalStateInfo.SignalStateIsValid = true;
SignalStateInfo.SignalStateIsValidAfterReentrance = true;
}
}
void checkSignalStability(void) {
CONFDATATYPE ConfidenceSignalIsStable;
CONFDATATYPE ConfidenceSignalIsDrifting;
if (DABHistory.numberOfEntries() >= 2) {
ConfidenceSignalIsStable = FuzzyFunctionSignalIsStable(
relativeDistance<INDATATYPE, PROCDATATYPE>(
DABHistory[DABHistory.numberOfEntries() - 1], DABHistory[0]));
ConfidenceSignalIsDrifting = FuzzyFunctionSignalIsDrifting(
relativeDistance<INDATATYPE, PROCDATATYPE>(
DABHistory[DABHistory.numberOfEntries() - 1], DABHistory[0]));
} else {
// @benedikt: I do not know if this "initializing" is the best, but I
// think it makes sense because we do not know if it is stable or
// drifting.
ConfidenceSignalIsStable = 0;
ConfidenceSignalIsDrifting = 0;
}
//@benedikt: before it was "ConfidenceSignalIsStable >=
// ConfidenceSignalIsDrifting" -> stable. However, I think like that it
// makes
// more sense. What do you mean?
if (ConfidenceSignalIsStable > ConfidenceSignalIsDrifting) {
SignalStateInfo.SignalStateCondition = SignalStateCondition::STABLE;
} else if (ConfidenceSignalIsStable < ConfidenceSignalIsDrifting) {
SignalStateInfo.SignalStateCondition = SignalStateCondition::DRIFTING;
} else {
SignalStateInfo.SignalStateCondition = SignalStateCondition::UNKNOWN;
}
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATE_HPP
diff --git a/include/rosa/agent/SystemState.hpp b/include/rosa/agent/SystemState.hpp
index 7033135..d245aaf 100644
--- a/include/rosa/agent/SystemState.hpp
+++ b/include/rosa/agent/SystemState.hpp
@@ -1,97 +1,123 @@
//===-- rosa/agent/SystemState.hpp ------------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SystemState.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *system state* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SYSTEMSTATE_HPP
#define ROSA_AGENT_SYSTEMSTATE_HPP
#include "rosa/agent/Functionality.h"
#include "rosa/agent/SignalState.hpp"
#include "rosa/support/debug.hpp"
-#include <array>
+#include <vector>
namespace rosa {
namespace agent {
// System state conditions defining how the condition of a \c
/// rosa::agent::SystemState is saved in \c rosa::agent::SystemStateInformation.
enum class SystemStateCondition {
STABLE, ///< The system state is stable
DRIFTING, ///< The system state is drifting
MALFUNCTIONING, ///< The system state is malfunctioning
UNKNOWN ///< The system state is unknown
};
/// TODO: write description
template <typename CONFDATATYPE> struct SystemStateInformation {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence type is not to arithmetic");
/// The system state ID saved as an uint32_teger number
uint32_t SystemStateID;
/// The SystemStateConfidence shows the overall confidence value of the system
/// state.
CONFDATATYPE OverallDetectionConfidence;
/// The SystemStateCondition shows the condition of a system state (stable,
/// drifting, malfunctioning, or unknown)
- //@David: is it ok to name the variable exactly as the type is named?
SystemStateCondition SystemStateCondition;
/// The SystemStateIsValid saves the number of samples which have been
/// inserted into the state after entering it.
uint32_t NumberOfInsertedSamplesAfterEntrance;
/// The SystemStateIsValid shows whether a state is valid or invalid.
/// In this context, valid means that enough samples which are in close
/// proximitry have been inserted into the state.
bool SystemStateIsValid;
/// The SystemStateJustGotValid shows whether a system state got valid
/// (toggled from invalid to valid) during the current inserted sample.
bool SystemStateJustGotValid;
/// The SystemStateIsValidAfterReentrance shows whether a system state is
/// valid after the variable changed back to it again.
bool SystemStateIsValidAfterReentrance;
- /// The SystemIsStable shows whether a signa is stable and not
- /// drifting.
- bool SystemIsStable;
};
+// todo: do we need PROCDATATYPE?
/// TODO TEXT
-template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE,
- std::size_t NUMOFINPUTSIGNALS, std::size_t NUMOFOUTPUTSIGNALS>
+template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE>
class SystemState : public Functionality {
// Make sure the actual type arguments are matching our expectations.
+ STATIC_ASSERT(std::is_arithmetic<INDATATYPE>::value,
+ "input data type is not to arithmetic");
STATIC_ASSERT(std::is_arithmetic<CONFDATATYPE>::value,
"confidence abstraction type is not to arithmetic");
+ STATIC_ASSERT(std::is_arithmetic<PROCDATATYPE>::value,
+ "process data type is not to arithmetic");
private:
- // TODO: vector
- std::array<SignalState<INDATATYPE, CONFDATATYPE, PROCDATATYPE>,
- NUMOFINPUTSIGNALS>
- InputSignalStates;
- std::array<SignalState<INDATATYPE, CONFDATATYPE, PROCDATATYPE>,
- NUMOFOUTPUTSIGNALS>
- OutputSignalStates;
+ SystemStateInformation<CONFDATATYPE> SystemStateInfo;
+
+ std::vector<SignalStateInformation<CONFDATATYPE>> Signals;
public:
- // SystemState(unsigned int NumberOfInputSignals) noexcept : {}
+ /// TODO write
+ SystemState(uint32_t SignalStateID, uint32_t NumberOfSignals) noexcept
+ : SystemStateInfo{
+ SignalStateID, 0, SystemStateCondition::UNKNOWN, 0, false,
+ false, false} {
+ Signals.resize(NumberOfSignals);
+ }
+
+ /// Destroys \p this object.
+ ~SystemState(void) = default;
+
+ /// TODO: describe
+ template <typename CONFDATATYPE, std::size_t size>
+ CONFDATATYPE fuzzyOR(const std::array<CONFDATATYPE, size> &Data) noexcept {
+ STATIC_ASSERT(std::is_arithmetic<CONFDATATYPE>::value,
+ "Type of FuzzyAnd is not arithmetic");
+ STATIC_ASSERT(size > 1, "Number of Arguments is to little");
+ ASSERT(std::all_of(Data.begin(), Data.end(),
+ [](const auto &v) { return v <= 1 && v >= 0; }));
+ return *std::max_element(Data.begin(), Data.end());
+ }
+
+ /// TODO: describe
+ template <typename CONFDATATYPE, typename... _CONFDATATYPE>
+ std::enable_if_t<
+ std::conjunction_v<std::is_same<CONFDATATYPE, _CONFDATATYPE>...>,
+ CONFDATATYPE>
+ fuzzyOR(const CONFDATATYPE Data, const _CONFDATATYPE... Datan) noexcept {
+ return fuzzyOR(
+ std::array<CONFDATATYPE, sizeof...(Datan) + 1>{Data, Datan...});
+ }
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SYSTEMSTATE_HPP
diff --git a/include/rosa/agent/SystemStateDetector.hpp b/include/rosa/agent/SystemStateDetector.hpp
index a255e0b..d18607c 100644
--- a/include/rosa/agent/SystemStateDetector.hpp
+++ b/include/rosa/agent/SystemStateDetector.hpp
@@ -1,106 +1,104 @@
//===-- rosa/agent/SystemStateDetector.hpp ----------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SystemStateDetector.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *system state detector* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SYSTEMSTATEDETECTOR_HPP
#define ROSA_AGENT_SYSTEMSTATEDETECTOR_HPP
#include "rosa/agent/Functionality.h"
#include "rosa/agent/StateDetector.hpp"
#include "rosa/agent/SystemState.hpp"
#include "rosa/support/debug.hpp"
namespace rosa {
namespace agent {
// todo: löschen , std::size_t NUMOFINPUTSIGNALS, std::size_t NUMOFOUTPUTSIGNALS
/// TODO: write description
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE,
- HistoryPolicy HP, std::size_t NUMOFINPUTSIGNALS,
- std::size_t NUMOFOUTPUTSIGNALS>
+ HistoryPolicy HP>
class SystemStateDetector
: public StateDetector<INDATATYPE, CONFDATATYPE, PROCDATATYPE, HP> {
//@maxi added them to make it compilable is this what you wanted?
using StateDetector =
StateDetector<INDATATYPE, CONFDATATYPE, PROCDATATYPE, HP>;
using PartFuncPointer = typename StateDetector::PartFuncPointer;
private:
// For the convinience to write a shorter data type name
using SystemStatePtr =
- std::shared_ptr<SystemState<INDATATYPE, CONFDATATYPE, PROCDATATYPE,
- NUMOFINPUTSIGNALS, NUMOFOUTPUTSIGNALS>>;
+ std::shared_ptr<SystemState<INDATATYPE, CONFDATATYPE, PROCDATATYPE>>;
/// The NextSystemStateID is a counter variable which stores the ID which
/// the
/// next system state shall have.
uint32_t NextSystemStateID;
/// The SystemStateHasChanged is a flag that show whether the observed
/// system
/// has changed its state.
bool SystemStateHasChanged;
/// The CurrentSystemState is a pointer to the (saved) system state in which
/// the actual state of the observed system is.
SystemStatePtr CurrentSystemState;
/// The DetectedSystemStates is a history in that all detected system states
/// are saved.
DynamicLengthHistory<SystemStatePtr, HP> DetectedSystemStates;
/// The FuzzyFunctionDelayTimeToGetBroken is the fuzzy function that gives
/// the confidence whether the system is Broken because of an input change
/// without an output change or vice versa. A small time gap between the two
/// shall be allowed.
PartFuncPointer FuzzyFunctionDelayTimeToGetBroken;
/// The FuzzyFunctionDelayTimeToBeWorking is the fuzzy function that gives
/// the
/// confidence whether the system is still OK allthough an input change
/// without an output change or vice versa.
PartFuncPointer FuzzyFunctionDelayTimeToBeWorking;
public:
// todo zwei parameter für variablen anzahl
/// TODO: write description
SystemStateDetector(
uint32_t MaximumNumberOfSystemStates,
PartFuncPointer FuzzyFunctionDelayTimeToGetBroken,
PartFuncPointer FuzzyFunctionDelayTimeToBeWorking) noexcept
: NextSystemStateID(1), SystemStateHasChanged(false),
CurrentSystemState(nullptr),
DetectedSystemStates(MaximumNumberOfSystemStates),
FuzzyFunctionDelayTimeToGetBroken(FuzzyFunctionDelayTimeToGetBroken),
FuzzyFunctionDelayTimeToBeWorking(FuzzyFunctionDelayTimeToBeWorking) {}
/// Destroys \p this object.
~SystemStateDetector(void) = default;
/// TODO: write description
SystemStateInformation<CONFDATATYPE>
detectSystemState(INDATATYPE Sample) noexcept {
// dummy line
Sample = 1;
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SYSTEMSTATEDETECTOR_HPP
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Thu, Jul 3, 10:19 PM (4 h, 39 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
157373
Default Alt Text
(45 KB)
Attached To
Mode
R20 SoC_Rosa_repo
Attached
Detach File
Event Timeline
Log In to Comment