Page MenuHomePhorge

No OneTemporary

Size
52 KB
Referenced Files
None
Subscribers
None
diff --git a/apps/ccam/ccam.cpp b/apps/ccam/ccam.cpp
index 5c7c1b9..2901bb6 100644
--- a/apps/ccam/ccam.cpp
+++ b/apps/ccam/ccam.cpp
@@ -1,641 +1,622 @@
//===-- apps/ccam/ccam.cpp --------------------------------------*- C++ -*-===//
//
// The RoSA Framework -- Application CCAM
//
// Distributed under the terms and conditions of the Boost Software
/// License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file apps/ccam/ccam.cpp
///
/// \author Maximilian Goetzinger (maximilian.goetzinger@tuwien.ac.at)
/// \author Benedikt Tutzer (benedikt.tutzer@tuwien.ac.at)
///
/// \date 2019
///
/// \brief The application CCAM implements the case study from the paper:
/// M. Goetzinger, N. TaheriNejad, H. A. Kholerdi, A. Jantsch, E. Willegger,
/// T. Glatzl, A.M. Rahmani, T.Sauter, P. Liljeberg: Model - Free Condition
/// Monitoring with Confidence
///
/// \todo Clean up source files of this app: add standard RoSA header comment
/// for own files and do something with 3rd party files...
//===----------------------------------------------------------------------===//
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Confidence.hpp"
#include "rosa/agent/DistanceMetrics.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include <iostream>
#include "rosa/config/version.h"
#include "rosa/agent/SignalStateDetector.hpp"
#include "rosa/agent/SystemStateDetector.hpp"
#include "rosa/app/Application.hpp"
#include "rosa/support/csv/CSVReader.hpp"
#include "rosa/support/csv/CSVWriter.hpp"
#include "rosa/support/mqtt/MQTTReader.hpp"
#include "rosa/app/AppTuple.hpp"
#include <fstream>
#include <limits>
#include <memory>
#include <streambuf>
#include <string>
#include "configuration.h"
#include "statehandlerutils.h"
using namespace rosa;
using namespace rosa::agent;
using namespace rosa::app;
using namespace rosa::terminal;
using namespace rosa::mqtt;
const std::string AppName = "CCAM";
int main(int argc, char **argv) {
LOG_INFO_STREAM << '\n'
<< library_string() << " -- " << Color::Red << AppName
<< "app" << Color::Default << '\n';
//
// Read the filepath of the config file of the observed system. The filepath
// is in the first argument passed to the application. Fuzzy functions etc.
// are described in this file.
//
if (argc < 2) {
LOG_ERROR("Specify config File!\nUsage:\n\tccam config.json");
return 1;
}
std::string ConfigPath = argv[1];
//
// Load config file and read in all parameters. Fuzzy functions etc. are
// described in this file.
//
if (!readConfigFile(ConfigPath)) {
LOG_ERROR_STREAM << "Could not read config from \"" << ConfigPath << "\"\n";
return 2;
}
//
// Create a CCAM context.
//
LOG_INFO("Creating Context");
std::unique_ptr<Application> AppCCAM = Application::create(AppName);
//
// Create following function which shall give information if the time gap
// between changed input(s) and changed output(s) shows already a malfunction
// of the system.
//
// ____________
// /
// /
// __________/
//
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 0.f, AppConfig.BrokenCounter, 1.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(1.f, 0.f)}},
0.f));
//
// Create following function which shall give information if the time gap
// between changed input(s) and changed output(s) still shows a
// well-functioning system.
//
// ____________
// \
// \
// \__________
//
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 1.f, AppConfig.BrokenCounter, 0.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(0.f, 0.f)}},
1.f));
//
// Create a AppAgent with SystemStateDetector functionality.
//
LOG_INFO("Create SystemStateDetector agent.");
AgentHandle SystemStateDetectorAgent = createSystemStateDetectorAgent(
AppCCAM, "SystemStateDetector", AppConfig.SignalConfigurations.size(),
BrokenDelayFunction, OkDelayFunction);
//
// Set policy of SystemStateDetectorAgent that it wait for all
// SignalStateDetectorAgents
//
std::set<size_t> pos;
for (size_t i = 0; i < AppConfig.SignalConfigurations.size(); ++i)
pos.insert(pos.end(), i);
AppCCAM->setExecutionPolicy(SystemStateDetectorAgent,
AppExecutionPolicy::awaitAll(pos));
//
// Create Vectors for all sensors, all signal related fuzzy functions, all
// signal state detectors, all signal state agents, and all input data files.
//
LOG_INFO("Creating sensors, SignalStateDetector functionalities and their "
"Abstractions.");
std::vector<AgentHandle> Sensors;
std::vector<std::shared_ptr<Abstraction<std::pair<float, float>, float>>>
DistanceMetrics;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMismatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsStableFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsDriftingDownFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsDriftingUpFunctions;
std::vector<std::shared_ptr<PartialFunction<uint32_t, float>>>
SignalConditionLookBackFunctions;
std::vector<std::shared_ptr<PartialFunction<uint32_t, float>>>
SignalConditionHistoryDesicionFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMatchFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMismatchFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleValidFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleInvalidFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesValidFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesInvalidFunctions;
std::vector<std::shared_ptr<
SignalStateDetector<float, float, float, HistoryPolicy::FIFO>>>
SignalStateDetectors;
std::vector<AgentHandle> SignalStateDetectorAgents;
std::vector<std::ifstream> DataFiles;
//
// Go through all signal state configurations (number of signals), and create
// functionalities for SignalStateDetector.
//
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
//
// Create application sensors.
//
Sensors.emplace_back(
AppCCAM->createSensor<float>(SignalConfiguration.Name + "_Sensor"));
//
// Create following function(s) which shall give information whether one
// sample matches another one (based on the relative distance between them).
//
// ____________
// / \
// / \
// __________/ \__________
//
//
if (std::strcmp(SignalConfiguration.DistanceMetric.c_str(), "absolute") ==
0) {
DistanceMetrics.emplace_back(new AbsoluteDistance<float, float>());
} else if (std::strcmp(SignalConfiguration.DistanceMetric.c_str(),
"daniel1") == 0) {
DistanceMetrics.emplace_back(new DanielsDistance1<float, float>());
} else if (std::strcmp(SignalConfiguration.DistanceMetric.c_str(),
"daniel2") == 0) {
DistanceMetrics.emplace_back(new DanielsDistance2<float, float>());
} else if (std::strcmp(SignalConfiguration.DistanceMetric.c_str(),
"daniel3") == 0) {
DistanceMetrics.emplace_back(new DanielsDistance3<float, float>());
} else if (std::strcmp(SignalConfiguration.DistanceMetric.c_str(),
"maxi1") == 0) {
DistanceMetrics.emplace_back(new MaxisDistance1<float, float>());
} else {
// default is relative distance
DistanceMetrics.emplace_back(new RelativeDistance<float, float>());
}
SampleMatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 0.f,
-SignalConfiguration.InnerBound, 1.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 1.f,
SignalConfiguration.OuterBound, 0.f)},
},
0));
//
// Create following function(s) which shall give information whether one
// sample mismatches another one (based on the relative distance between
// them).
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SampleMismatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 1.f,
-SignalConfiguration.InnerBound, 0.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 0.f,
SignalConfiguration.OuterBound, 1.f)},
},
1));
//
// Create following function(s) which shall give information whether a
// signal is stable.
//
// ____________
// / \
// / \
// __________/ \__________
//
//
SignalIsStableFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBoundDrift,
- -SignalConfiguration.InnerBoundDrift},
- std::make_shared<LinearFunction<float, float>>(
- -SignalConfiguration.OuterBoundDrift, 0.f,
- -SignalConfiguration.InnerBoundDrift, 1.f)},
- {{-SignalConfiguration.InnerBoundDrift,
- SignalConfiguration.InnerBoundDrift},
- std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
- {{SignalConfiguration.InnerBoundDrift,
SignalConfiguration.OuterBoundDrift},
std::make_shared<LinearFunction<float, float>>(
- SignalConfiguration.InnerBoundDrift, 1.f,
- SignalConfiguration.OuterBoundDrift, 0.f)},
+ 1.f, 0.f)},
},
0));
//
// Create following function(s) which shall give information whether a
// signal is drifting down.
//
// ____________
// \
// \
// \______________________
//
//
SignalIsDriftingDownFunctions.emplace_back(
new PartialFunction<float, float>(
{
- {{-SignalConfiguration.OuterBoundDrift,
- -SignalConfiguration.InnerBoundDrift},
- std::make_shared<LinearFunction<float, float>>(
- -SignalConfiguration.OuterBoundDrift, 1.f,
- -SignalConfiguration.InnerBoundDrift, 0.f)},
{{-SignalConfiguration.InnerBoundDrift,
std::numeric_limits<float>::max()},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
},
1));
//
// Create following function(s) which shall give information whether a
// signal is drifting up.
//
// ____________
// /
// /
// ______________________/
//
//
SignalIsDriftingUpFunctions.emplace_back(new PartialFunction<float, float>(
{
{{std::numeric_limits<float>::min(),
SignalConfiguration.InnerBoundDrift},
- std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
- {{SignalConfiguration.InnerBoundDrift,
- SignalConfiguration.OuterBoundDrift},
- std::make_shared<LinearFunction<float, float>>(
- SignalConfiguration.InnerBoundDrift, 0.f,
- SignalConfiguration.OuterBoundDrift, 1.f)},
+ std::make_shared<LinearFunction<float, float>>(0.f, 0.f)}
},
1));
// SAVE CHANGES
SignalConditionLookBackFunctions.emplace_back(
new PartialFunction<uint32_t, float>(
{{{1, SignalConfiguration.DriftLookbackRange + 1},
std::make_shared<LinearFunction<uint32_t, float>>(
1, 1.f, SignalConfiguration.DriftLookbackRange + 1, 0.f)},
{{SignalConfiguration.DriftLookbackRange + 1,
std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(0.f, 0.f)}},
1.f));
SignalConditionHistoryDesicionFunctions.emplace_back(
new PartialFunction<uint32_t, float>(
{{{0, SignalConfiguration.DriftLookbackRange},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 0.f, SignalConfiguration.DriftLookbackRange, 1.f)},
{{SignalConfiguration.DriftLookbackRange,
std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(1.f, 0.f)}},
0.f));
// - SAVE CHANGES
//
// Create following function(s) which shall give information how many
// history samples match another sample.
//
// ____________
// /
// /
// __________/
//
NumOfSamplesMatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp));
//
// Create following function(s) which shall give information how many
// history samples mismatch another sample.
//
// ____________
// \
// \
// \__________
//
NumOfSamplesMismatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown));
//
// Create following function(s) which shall give information how good all
// samples in a state match each other.
//
// ____________
// / \
// / \
// __________/ \__________
//
//
SampleValidFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 0.f,
-SignalConfiguration.InnerBound, 1.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 1.f,
SignalConfiguration.OuterBound, 0.f)},
},
0));
//
// Create following function(s) which shall give information how good all
// samples in a state mismatch each other.
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SampleInvalidFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 1.f,
-SignalConfiguration.InnerBound, 0.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 0.f,
SignalConfiguration.OuterBound, 1.f)},
},
1));
//
// Create following function(s) which shall give information how many
// history samples match each other.
//
// ____________
// /
// /
// __________/
//
NumOfSamplesValidFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp));
//
// Create following function(s) which shall give information how many
// history samples mismatch each other.
//
// ____________
// \
// \
// \__________
//
NumOfSamplesInvalidFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown));
//
// Create SignalStateDetector functionality
//
SignalStateDetectors.emplace_back(
new SignalStateDetector<float, float, float, HistoryPolicy::FIFO>(
SignalConfiguration.Output ? SignalProperties::OUTPUT
: SignalProperties::INPUT,
std::numeric_limits<int>::max(), DistanceMetrics.back(),
SampleMatchesFunctions.back(), SampleMismatchesFunctions.back(),
NumOfSamplesMatchFunctions.back(),
NumOfSamplesMismatchFunctions.back(), SampleValidFunctions.back(),
SampleInvalidFunctions.back(), NumOfSamplesValidFunctions.back(),
NumOfSamplesInvalidFunctions.back(),
SignalIsDriftingDownFunctions.back(),
SignalIsDriftingUpFunctions.back(), SignalIsStableFunctions.back(),
SignalConditionLookBackFunctions.back(),
SignalConditionHistoryDesicionFunctions.back(),
SignalConfiguration.DriftLookbackRange, SignalConfiguration.DABSize,
SignalConfiguration.SampleHistorySize));
//
// Create low-level application agents
//
SignalStateDetectorAgents.push_back(createSignalStateDetectorAgent(
AppCCAM, SignalConfiguration.Name, SignalStateDetectors.back()));
AppCCAM->setExecutionPolicy(
SignalStateDetectorAgents.back(),
AppExecutionPolicy::decimation(AppConfig.DownsamplingRate));
//
// Connect sensors to low-level agents.
//
LOG_INFO("Connect sensors to their corresponding low-level agents.");
AppCCAM->connectSensor(SignalStateDetectorAgents.back(), 0, Sensors.back(),
SignalConfiguration.Name + "_Sensor ->" +
SignalConfiguration.Name +
"_SignalStateDetector_Agent-Channel");
AppCCAM->connectAgents(
SystemStateDetectorAgent, SignalStateDetectors.size() - 1,
SignalStateDetectorAgents.back(),
SignalConfiguration.Name +
"_SignalStateDetector_Agent->SystemStateDetector_Agent_Channel");
}
//
// For simulation output, create a logger agent writing the output of the
// high-level agent into a CSV file.
//
LOG_INFO("Create a logger agent.");
// Create CSV writer.
std::ofstream OutputCSV(AppConfig.OutputFilePath);
//for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
// OutputCSV << SignalConfiguration.Name + ",";
//}
//OutputCSV << "StateID,";
//OutputCSV << "Confidence State Valid,";
//OutputCSV << "Confidence State Invalid,";
//OutputCSV << "Confidence Inputs Matching,";
//OutputCSV << "Confidence Outputs Matching,";
//OutputCSV << "Confidence Inputs Mismatching,";
//OutputCSV << "Confidence Outputs Mismatching,";
OutputCSV << "State Condition,";
//OutputCSV << "Confidence System Functioning,";
//OutputCSV << "Confidence System Malfunctioning,";
//OutputCSV << "Overall Confidence,";
OutputCSV << "\n";
// The agent writes each new input value into a CSV file and produces
// nothing.
using Input = std::pair<SystemStateTuple, bool>;
using Result = Optional<AppTuple<unit_t>>;
using Handler = std::function<Result(Input)>;
std::string Name = "Logger Agent";
AgentHandle LoggerAgent = AppCCAM->createAgent(
"Logger Agent", Handler([&OutputCSV](Input I) -> Result {
const SystemStateTuple &T = I.first;
OutputCSV << std::get<0>(
static_cast<const std::tuple<std::string> &>(T))
<< std::endl;
return Result();
}));
//
// Connect the high-level agent to the logger agent.
//
LOG_INFO("Connect the high-level agent to the logger agent.");
AppCCAM->connectAgents(LoggerAgent, 0, SystemStateDetectorAgent,
"SystemStateDetector Channel");
//
// Only log if the SystemStateDetector actually ran
//
AppCCAM->setExecutionPolicy(LoggerAgent, AppExecutionPolicy::awaitAll({0}));
//
// Do simulation.
//
LOG_INFO("Setting up and performing simulation.");
//
// Initialize application for simulation.
//
AppCCAM->initializeSimulation();
//
// Open CSV files and register them for their corresponding sensors.
//
// Make sure DataFiles will not change capacity while adding elements to it.
// Changing capacity moves elements away, which invalidates references
// captured by CSVIterator.
DataFiles.reserve(AppConfig.SignalConfigurations.size());
uint32_t i = 0;
bool hasMQTT = false;
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
switch (SignalConfiguration.DataInterfaceType) {
case DataInterfaceTypes::CSV:
DataFiles.emplace_back(SignalConfiguration.InputPath);
if (!DataFiles.at(i)) {
LOG_ERROR_STREAM << "Cannot open Input File \""
<< SignalConfiguration.InputPath << "\" for Signal \""
<< SignalConfiguration.Name << "\"" << std::endl;
return 3;
}
AppCCAM->registerSensorValues(Sensors.at(i),
csv::CSVIterator<float>(DataFiles.at(i)),
csv::CSVIterator<float>());
LOG_INFO_STREAM << "Sensor " << SignalConfiguration.Name
<< " is fed by csv file " << SignalConfiguration.InputPath
<< std::endl;
break;
case DataInterfaceTypes::MQTT: {
hasMQTT = true;
auto it = MQTTIterator<float>(SignalConfiguration.MQTTTopic);
AppCCAM->registerSensorValues(Sensors.at(i), std::move(it),
MQTTIterator<float>());
LOG_INFO_STREAM << "Sensor " << SignalConfiguration.Name
<< " is fed by MQTT topic "
<< SignalConfiguration.MQTTTopic << std::endl;
break;
}
default:
LOG_ERROR_STREAM << "No data source for " << SignalConfiguration.Name
<< std::endl;
break;
}
i++;
}
//
// Start simulation.
//
auto &log = LOG_WARNING_STREAM;
log << "Simulation starting.";
if (hasMQTT) {
log << " Publishing MQTT messages may start.";
}
log << std::endl;
AppCCAM->simulate(AppConfig.NumberOfSimulationCycles);
return 0;
}
diff --git a/include/rosa/agent/SignalState.hpp b/include/rosa/agent/SignalState.hpp
index 1ea6b6a..b06e08f 100644
--- a/include/rosa/agent/SignalState.hpp
+++ b/include/rosa/agent/SignalState.hpp
@@ -1,638 +1,645 @@
//===-- rosa/agent/SignalState.hpp ------------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SignalState.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *signal state* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SIGNALSTATE_HPP
#define ROSA_AGENT_SIGNALSTATE_HPP
#include "rosa/agent/DistanceMetrics.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/History.hpp"
#include "rosa/agent/State.hpp"
#include "rosa/support/math.hpp"
namespace rosa {
namespace agent {
/// Signal properties defining the properties of the signal which is monitored
/// by \c rosa::agent::SignalStateDetector and is saved in \c
/// rosa::agent::SignalStateInformation.
enum SignalProperties : uint8_t {
INPUT = 0, ///< The signal is an input signal
OUTPUT = 1 ///< The signal is an output signal
};
/// TODO: write description
template <typename PROCDATATYPE, typename CONFDATATYPE> struct DABHistoryEntry {
/// TODO: write description
PROCDATATYPE AvgValue;
/// TODO: write description
CONFDATATYPE DecisionDABIsStable;
/// TODO: write description
CONFDATATYPE DecisionDABIsDriftingDown;
/// TODO: write description
CONFDATATYPE DecisionDABIsDriftingUp;
/// TODO: write description
bool DABIsCurrent;
public:
DABHistoryEntry(PROCDATATYPE AvgValue) {
this->AvgValue = AvgValue;
this->DecisionDABIsStable = 1;
this->DecisionDABIsDriftingDown = 0;
this->DecisionDABIsDriftingUp = 0;
this->DABIsCurrent = true;
}
};
/// TODO: write description
template <typename CONFDATATYPE>
struct SignalStateInformation : StateInformation<CONFDATATYPE> {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence type is not to arithmetic");
/// ConfidenceOfMatchingState is the confidence how good the new sample
/// matches the state.
CONFDATATYPE ConfidenceOfMatchingState;
/// ConfidenceOfMatchingState is the confidence how bad the new sample
/// matches the state.
CONFDATATYPE ConfidenceOfMismatchingState;
/// The SignalProperty saves whether the monitored signal is an input our
/// output signal.
SignalProperties SignalProperty;
/// The SignalStateIsValid saves the number of samples which have been
/// inserted into the state after entering it.
uint32_t NumberOfInsertedSamplesAfterEntrance;
public:
SignalStateInformation(unsigned int SignalStateID,
SignalProperties _SignalProperty) {
this->StateID = SignalStateID;
this->SignalProperty = _SignalProperty;
this->StateCondition = StateConditions::UNKNOWN;
this->NumberOfInsertedSamplesAfterEntrance = 0;
this->StateIsValid = false;
this->StateJustGotValid = false;
this->StateIsValidAfterReentrance = false;
this->ConfidenceStateIsValid = 0;
this->ConfidenceStateIsInvalid = 0;
this->ConfidenceStateIsStable = 0;
this->ConfidenceStateIsDrifting = 0;
this->ConfidenceStateIsDriftingDown = 0;
this->ConfidenceStateIsDriftingUp = 0;
}
SignalStateInformation() = default;
};
/// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of
/// data in that the confidence values are given, \tparam PROCDATATYPE type of
/// the relative distance and the type of data in which DABs are saved.
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE>
class SignalState : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence data type is not to arithmetic");
STATIC_ASSERT(
(std::is_arithmetic<PROCDATATYPE>::value),
"process data type (DAB and Relative Distance) is not to arithmetic");
public:
// The metric to calculate the distance between two points
using DistanceMetricAbstraction =
Abstraction<std::pair<INDATATYPE, INDATATYPE>, PROCDATATYPE> &;
// For the convinience to write a shorter data type name
using PartFuncReference = PartialFunction<INDATATYPE, CONFDATATYPE> &;
// using PartFuncReference2 = ;
using StepFuncReference = StepFunction<INDATATYPE, CONFDATATYPE> &;
private:
/// SignalStateInfo is a struct of SignalStateInformation that contains
/// information about the current signal state.
SignalStateInformation<CONFDATATYPE> SignalStateInfo;
/// The metric to calculate the distance between two points
DistanceMetricAbstraction DistanceMetric;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMatches;
/// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMismatches;
/// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
StepFuncReference FuzzyFunctionNumOfSamplesMatches;
/// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
/// the confidence how many samples from the sampe history mismatch the new
/// sample.
StepFuncReference FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSampleValid is the fuzzy function that gives the
/// confidence how good one matches another sample in the sample
/// history. This is done to evaluate whether a state is valid.
PartFuncReference FuzzyFunctionSampleValid;
/// The FuzzyFunctionSampleInvalid is the fuzzy function that gives the
/// confidence how bad one sample matches another sample in the sample
/// history. This is done to evaluate whether a state is invalid.
PartFuncReference FuzzyFunctionSampleInvalid;
/// The FuzzyFunctionNumOfSamplesValid is the fuzzy function that gives the
/// confidence how many samples from the sample history match another sample.
/// This is done to evaluate whether a state is valid.
StepFuncReference FuzzyFunctionNumOfSamplesValid;
/// The FuzzyFunctionNumOfSamplesInvalid is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch another
/// sample. This is done to evaluate whether a state is invalid.
StepFuncReference FuzzyFunctionNumOfSamplesInvalid;
/// The FuzzyFunctionSignalIsDriftingDown is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting down.
PartFuncReference FuzzyFunctionSignalIsDriftingDown;
/// The FuzzyFunctionSignalIsDriftingUp is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting up.
PartFuncReference FuzzyFunctionSignalIsDriftingUp;
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is stable (not drifting).
PartFuncReference FuzzyFunctionSignalIsStable;
/// TODO: description
PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionLookBack;
/// TODO: description
PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionHistoryDesicion;
/// TODO: description
uint32_t DriftLookbackRange;
/// SampleHistory is a history in that the last sample values are stored.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO> SampleHistory;
/// DAB is a (usually) small history of the last sample values of which a
/// average is calculated if the DAB is full.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::SRWF> DAB;
/// DABHistory is a history in that the last DABs (to be exact, the averages
/// of the last DABs) are stored.
DynamicLengthHistory<DABHistoryEntry<PROCDATATYPE, CONFDATATYPE>,
HistoryPolicy::FIFO>
DABHistory;
/// LowestConfidenceMatchingHistory is a history in that the lowest confidence
/// for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
LowestConfidenceMatchingHistory;
/// HighestConfidenceMatchingHistory is a history in that the highest
/// confidence for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
HighestConfidenceMismatchingHistory;
/// TempConfidenceMatching is the confidence how good a sample matches the
/// state. However, the value of this variable is only needed temporarly.
CONFDATATYPE TempConfidenceMatching = 0;
/// TempConfidenceMatching is the confidence how bad a sample matches the
/// state. However, the value of this variable is only needed temporarly.
CONFDATATYPE TempConfidenceMismatching = 0;
/// For the linear regression
PROCDATATYPE MeanX;
/// For the linear regression
PROCDATATYPE RegressionDivisor;
public:
/// Creates an instance by setting all parameters
/// \param SignalStateID The Id of the SignalStateinfo \c
/// SignalStateInformation.
///
/// \param DistanceMetric the distance metric to calculate the distance
/// between two points
///
/// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
/// fuzzy function that gives the confidence how good the new sample matches
/// another sample in the sample history.
///
/// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
/// the fuzzy function that gives the confidence how bad the new sample
/// matches another sample in the sample history.
///
/// \param FuzzyFunctionNumOfSamplesMatches The
/// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
///
/// \param FuzzyFunctionNumOfSamplesMismatches The
/// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history mismatch the new
/// sample.
///
/// \param FuzzyFunctionSignalIsDriftingDown The
/// FuzzyFunctionSignalIsDriftingDown is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting down.
///
///
/// \param FuzzyFunctionSignalIsDriftingUp The FuzzyFunctionSignalIsDriftingUp
/// is the fuzzy function that gives the confidence how likely it is that the
/// signal (resp. the state of a signal) is drifting down.
///
/// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
/// fuzzy function that gives the confidence how likely it is that the signal
/// (resp. the state of a signal) is stable (not drifting).
///
/// \param SampleHistorySize Size of the Sample History \c
/// DynamicLengthHistory . SampleHistory is a history in that the last sample
/// values are stored.
///
SignalState(
uint32_t SignalStateID, SignalProperties SignalProperty,
uint32_t SampleHistorySize, uint32_t DABSize,
DistanceMetricAbstraction DistanceMetric,
PartFuncReference FuzzyFunctionSampleMatches,
PartFuncReference FuzzyFunctionSampleMismatches,
StepFuncReference FuzzyFunctionNumOfSamplesMatches,
StepFuncReference FuzzyFunctionNumOfSamplesMismatches,
PartFuncReference FuzzyFunctionSampleValid,
PartFuncReference FuzzyFunctionSampleInvalid,
StepFuncReference FuzzyFunctionNumOfSamplesValid,
StepFuncReference FuzzyFunctionNumOfSamplesInvalid,
PartFuncReference FuzzyFunctionSignalIsDriftingDown,
PartFuncReference FuzzyFunctionSignalIsDriftingUp,
PartFuncReference FuzzyFunctionSignalIsStable,
PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionLookBack,
PartialFunction<uint32_t, float>
&FuzzyFunctionSignalConditionHistoryDesicion,
uint32_t DriftLookbackRange) noexcept
: SignalStateInfo{SignalStateID, SignalProperty},
DistanceMetric(DistanceMetric),
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSampleValid(FuzzyFunctionSampleValid),
FuzzyFunctionSampleInvalid(FuzzyFunctionSampleInvalid),
FuzzyFunctionNumOfSamplesValid(FuzzyFunctionNumOfSamplesValid),
FuzzyFunctionNumOfSamplesInvalid(FuzzyFunctionNumOfSamplesInvalid),
FuzzyFunctionSignalIsDriftingDown(FuzzyFunctionSignalIsDriftingDown),
FuzzyFunctionSignalIsDriftingUp(FuzzyFunctionSignalIsDriftingUp),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable),
FuzzyFunctionSignalConditionLookBack(
FuzzyFunctionSignalConditionLookBack),
FuzzyFunctionSignalConditionHistoryDesicion(
FuzzyFunctionSignalConditionHistoryDesicion),
DriftLookbackRange(DriftLookbackRange),
SampleHistory(SampleHistorySize), DAB(DABSize),
DABHistory(DriftLookbackRange + 1),
LowestConfidenceMatchingHistory(SampleHistorySize),
HighestConfidenceMismatchingHistory(SampleHistorySize),
MeanX(DriftLookbackRange/2),
RegressionDivisor(0) {
for (unsigned int i = 0; i <= DriftLookbackRange; i++) {
RegressionDivisor += (i-MeanX)*(i-MeanX);
}
RegressionDivisor *= DABSize;
}
/// Destroys \p this object.
~SignalState(void) = default;
void leaveSignalState(void) noexcept {
DAB.clear();
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance = 0;
SignalStateInfo.StateIsValidAfterReentrance = false;
}
SignalStateInformation<CONFDATATYPE>
insertSample(INDATATYPE Sample) noexcept {
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance++;
validateSignalState(Sample);
SampleHistory.addEntry(Sample);
DAB.addEntry(Sample);
if (DAB.full()) {
// TODO: try median instead of avg
PROCDATATYPE AvgOfDAB = DAB.template average<PROCDATATYPE>();
DABHistory.addEntry(
DABHistoryEntry<PROCDATATYPE, CONFDATATYPE>(AvgOfDAB));
DAB.clear();
}
FuzzyFunctionNumOfSamplesMatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
FuzzyFunctionNumOfSamplesMismatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
checkSignalStability();
SignalStateInfo.ConfidenceOfMatchingState = TempConfidenceMatching;
SignalStateInfo.ConfidenceOfMismatchingState = TempConfidenceMismatching;
return SignalStateInfo;
}
/// Gives the confidence how likely the new sample matches the signal state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is matching the signal state.
CONFDATATYPE
confidenceSampleMatchesSignalState(INDATATYPE Sample) noexcept {
CONFDATATYPE ConfidenceOfBestCase = 0;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// Calculate distances to all history samples.
for (auto &HistorySample : SampleHistory) {
PROCDATATYPE RelativeDistance =
DistanceMetric(std::make_pair(Sample, HistorySample));
RelativeDistanceHistory.addEntry(RelativeDistance);
}
// Sort all calculated distances so that the lowest distance (will get the
// highest confidence) is at the beginning.
RelativeDistanceHistory.sortAscending();
CONFDATATYPE ConfidenceOfWorstFittingSample = 1;
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
// TODO (future): to accelerate . don't start with 1 start with some higher
// number because a low number (i guess lower than 5) will definetely lead
// to a low confidence. except the history is not full.
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
// TODO (future): if fuzzy is defined in a way that infinity is not 0 it
// would be a problem.
ConfidenceFromRelativeDistance = 0;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfWorstFittingSample = fuzzyAND(ConfidenceOfWorstFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfBestCase =
fuzzyOR(ConfidenceOfBestCase,
fuzzyAND(ConfidenceOfWorstFittingSample,
FuzzyFunctionNumOfSamplesMatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
TempConfidenceMatching = ConfidenceOfBestCase;
return ConfidenceOfBestCase;
}
/// Gives the confidence how likely the new sample mismatches the signal
/// state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is mismatching the signal state.
CONFDATATYPE
confidenceSampleMismatchesSignalState(INDATATYPE Sample) noexcept {
float ConfidenceOfWorstCase = 1;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// Calculate distances to all history samples.
for (auto &HistorySample : SampleHistory) {
RelativeDistanceHistory.addEntry(
DistanceMetric(std::make_pair(Sample, HistorySample)));
}
// Sort all calculated distances so that the highest distance (will get the
// lowest confidence) is at the beginning.
RelativeDistanceHistory.sortDescending();
CONFDATATYPE ConfidenceOfBestFittingSample = 0;
// TODO (future): to accelerate -> don't go until end. Confidences will only
// get higher. See comment in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)".
// Case 1 means that one (the worst fitting) sample of the history is
// compared with the new sample. Case 2 means the two worst history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
ConfidenceFromRelativeDistance = 1;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMismatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfBestFittingSample = fuzzyOR(ConfidenceOfBestFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfWorstCase =
fuzzyAND(ConfidenceOfWorstCase,
fuzzyOR(ConfidenceOfBestFittingSample,
FuzzyFunctionNumOfSamplesMismatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
TempConfidenceMismatching = ConfidenceOfWorstCase;
return ConfidenceOfWorstCase;
}
/// Gives information about the current signal state.
///
/// \return a struct SignalStateInformation that contains information about
/// the current signal state.
SignalStateInformation<CONFDATATYPE> signalStateInformation(void) noexcept {
return SignalStateInfo;
}
private:
void validateSignalState(INDATATYPE Sample) {
// TODO (future): WorstConfidenceDistance and BestConfidenceDistance could
// be set already in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)" and "CONFDATATYPE
// confidenceSampleMismatchesSignalState(INDATATYPE Sample)" when the new
// sample is compared to all history samples. This would save a lot time
// because the comparisons are done only once. However, it has to be asured
// that the these two functions are called before the insertation, and the
// FuzzyFunctions for validation and matching have to be the same!
CONFDATATYPE LowestConfidenceMatching = 1;
CONFDATATYPE HighestConfidenceMismatching = 0;
for (auto &HistorySample : SampleHistory) {
// TODO (future): think about using different fuzzy functions for
// validation and matching.
LowestConfidenceMatching =
fuzzyAND(LowestConfidenceMatching,
FuzzyFunctionSampleMatches(
DistanceMetric(std::make_pair(Sample, HistorySample))));
HighestConfidenceMismatching =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionSampleMismatches(
DistanceMetric(std::make_pair(Sample, HistorySample))));
}
LowestConfidenceMatchingHistory.addEntry(LowestConfidenceMatching);
HighestConfidenceMismatchingHistory.addEntry(HighestConfidenceMismatching);
LowestConfidenceMatching = LowestConfidenceMatchingHistory.lowestEntry();
HighestConfidenceMismatching =
HighestConfidenceMismatchingHistory.highestEntry();
SignalStateInfo.ConfidenceStateIsValid =
fuzzyAND(LowestConfidenceMatching,
FuzzyFunctionNumOfSamplesValid(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
SignalStateInfo.ConfidenceStateIsInvalid =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionNumOfSamplesInvalid(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
if (SignalStateInfo.ConfidenceStateIsValid >
SignalStateInfo.ConfidenceStateIsInvalid) {
if (SignalStateInfo.StateIsValid) {
SignalStateInfo.StateJustGotValid = false;
} else {
SignalStateInfo.StateJustGotValid = true;
}
SignalStateInfo.StateIsValid = true;
SignalStateInfo.StateIsValidAfterReentrance = true;
}
}
void checkSignalStability(void) {
if (DABHistory.numberOfEntries() > DriftLookbackRange) {
DABHistoryEntry<PROCDATATYPE, CONFDATATYPE> CurrentDAB =
DABHistory[DABHistory.numberOfEntries() - 1];
- if (CurrentDAB.DABIsCurrent == true) {
+ //if (CurrentDAB.DABIsCurrent == true) {
CurrentDAB.DABIsCurrent = false;
PROCDATATYPE MeanY = 0;
PROCDATATYPE k = 0;
// Iterate through all history DABs
for (unsigned int t = 0; t <= DriftLookbackRange; t++) {
DABHistoryEntry<PROCDATATYPE, CONFDATATYPE> DAB_T =
DABHistory[DABHistory.numberOfEntries() - (t + 1)];
MeanY += DAB_T.AvgValue;
}
MeanY /= (DriftLookbackRange+1);
for (unsigned int t = 0; t <= DriftLookbackRange; t++) {
DABHistoryEntry<PROCDATATYPE, CONFDATATYPE> DAB_T =
DABHistory[DABHistory.numberOfEntries() - (t + 1)];
k += (DriftLookbackRange - t - MeanX)*(DAB_T.AvgValue - MeanY);
}
k /= RegressionDivisor;
SignalStateInfo.ConfidenceStateIsStable =
FuzzyFunctionSignalIsStable(k);
SignalStateInfo.ConfidenceStateIsDriftingDown =
FuzzyFunctionSignalIsDriftingDown(k);
SignalStateInfo.ConfidenceStateIsDriftingUp =
FuzzyFunctionSignalIsDriftingUp(k);
if (SignalStateInfo.ConfidenceStateIsDriftingDown >
SignalStateInfo.ConfidenceStateIsDriftingUp) {
SignalStateInfo.ConfidenceStateIsDrifting =
SignalStateInfo.ConfidenceStateIsDriftingDown;
} else {
SignalStateInfo.ConfidenceStateIsDrifting =
SignalStateInfo.ConfidenceStateIsDriftingUp;
}
- // set SignalStateInfo StateCondition
- if (SignalStateInfo.ConfidenceStateIsStable >
- SignalStateInfo.ConfidenceStateIsDrifting)
+ if (SignalStateInfo.ConfidenceStateIsStable > SignalStateInfo.ConfidenceStateIsDrifting) {
SignalStateInfo.StateCondition = StateConditions::STABLE;
- else if (SignalStateInfo.ConfidenceStateIsStable <
- SignalStateInfo.ConfidenceStateIsDrifting)
- if (SignalStateInfo.ConfidenceStateIsDriftingDown >
- SignalStateInfo.ConfidenceStateIsDriftingUp)
- SignalStateInfo.StateCondition = StateConditions::DRIFTING_DN;
- else if (SignalStateInfo.ConfidenceStateIsDriftingDown <
- SignalStateInfo.ConfidenceStateIsDriftingUp)
- SignalStateInfo.StateCondition = StateConditions::DRIFTING_UP;
- else
+ } else if (SignalStateInfo.ConfidenceStateIsStable == SignalStateInfo.ConfidenceStateIsDrifting) {
+ if (SignalStateInfo.ConfidenceStateIsDriftingUp > SignalStateInfo.ConfidenceStateIsDriftingDown) {
+ if (SignalStateInfo.StateCondition == StateConditions::STABLE) {
+ SignalStateInfo.StateCondition = StateConditions::STABLE;
+ } else {
+ SignalStateInfo.StateCondition = StateConditions::DRIFTING_UP;
+ }
+ } else if (SignalStateInfo.ConfidenceStateIsDriftingUp < SignalStateInfo.ConfidenceStateIsDriftingDown) {
+ if (SignalStateInfo.StateCondition == StateConditions::STABLE) {
+ SignalStateInfo.StateCondition = StateConditions::STABLE;
+ } else {
+ SignalStateInfo.StateCondition = StateConditions::DRIFTING_DN;
+ }
+ } else {
SignalStateInfo.StateCondition = StateConditions::UNKNOWN;
- else
- SignalStateInfo.StateCondition = StateConditions::UNKNOWN;
- }
+ }
+ } if (SignalStateInfo.ConfidenceStateIsDriftingUp > SignalStateInfo.ConfidenceStateIsDriftingDown) {
+ SignalStateInfo.StateCondition = StateConditions::DRIFTING_UP;
+ } else {
+ SignalStateInfo.StateCondition = StateConditions::DRIFTING_DN;
+ }
+ //}
} else {
SignalStateInfo.ConfidenceStateIsStable = 0;
SignalStateInfo.ConfidenceStateIsDrifting = 0;
SignalStateInfo.ConfidenceStateIsDriftingDown = 0;
SignalStateInfo.ConfidenceStateIsDriftingUp = 0;
SignalStateInfo.StateCondition = StateConditions::UNKNOWN;
}
}
}; // namespace agent
} // namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATE_HPP

File Metadata

Mime Type
text/x-diff
Expires
Wed, Jul 2, 10:27 AM (1 h, 48 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
157126
Default Alt Text
(52 KB)

Event Timeline