Page Menu
Home
Phorge
Search
Configure Global Search
Log In
Files
F332192
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Size
61 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp b/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp
index cad229b..cea2ba0 100644
--- a/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp
+++ b/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp
@@ -1,247 +1,247 @@
//===- examples/agent-functionalities/Reliability-functionality.cpp *C++-*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file examples/agent-functionalities/Reliability-functionality.cpp
///
/// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at )
///
/// \date 2019
///
/// \brief A simple example on defining Relianility Functionalities.
///
//===----------------------------------------------------------------------===//
#define Reliability_trace_level 5
#include "rosa/config/version.h"
#include "rosa/support/log.h"
#include "rosa/agent/CrossCombinator.h"
#include "rosa/agent/RangeConfidence.hpp"
#include "rosa/agent/ReliabilityConfidenceCombinator.h"
#include <map>
#include <vector>
using namespace rosa::agent;
int main(void) {
typedef double SensorValueType;
typedef long StateType;
typedef double ReliabilityType;
- std::unique_ptr<RangeConfidence<ReliabilityType, StateType, SensorValueType>>
+ std::shared_ptr<RangeConfidence<ReliabilityType, StateType, SensorValueType>>
Confidence(new RangeConfidence<ReliabilityType, StateType,
SensorValueType>(
{{0, PartialFunction<double, double>(
{
{{0, 3},
std::make_shared<LinearFunction<double, double>>(
0, 1.0 / 3)},
{{3, 6},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{6, 9},
std::make_shared<LinearFunction<double, double>>(
3.0, -1.0 / 3)},
},
0)},
{1, PartialFunction<double, double>(
{
{{6, 9},
std::make_shared<LinearFunction<double, double>>(
-2, 1.0 / 3)},
{{9, 12},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{12, 15},
std::make_shared<LinearFunction<double, double>>(
5, -1.0 / 3)},
},
0)},
{2, PartialFunction<double, double>(
{
{{12, 15},
std::make_shared<LinearFunction<double, double>>(
-4, 1.0 / 3)},
{{15, 18},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{18, 21},
std::make_shared<LinearFunction<double, double>>(
7, -1.0 / 3)},
},
0)}}));
- std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>> Reliability(
+ std::shared_ptr<Abstraction<SensorValueType, ReliabilityType>> Reliability(
new LinearFunction<SensorValueType, ReliabilityType>(1, -1.0 / 3));
- std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>>
+ std::shared_ptr<Abstraction<SensorValueType, ReliabilityType>>
ReliabilitySlope(
new LinearFunction<SensorValueType, ReliabilityType>(1, -1.0 / 3));
- std::unique_ptr<Abstraction<std::size_t, ReliabilityType>> TimeConfidence(
+ std::shared_ptr<Abstraction<std::size_t, ReliabilityType>> TimeConfidence(
new LinearFunction<std::size_t, ReliabilityType>(1, -1.0 / 3));
auto lowlevel =
new ReliabilityAndConfidenceCombinator<SensorValueType, StateType,
ReliabilityType>();
std::vector<long> states;
states.push_back(0);
states.push_back(1);
states.push_back(2);
lowlevel->setConfidenceFunction(Confidence);
lowlevel->setReliabilityFunction(Reliability);
lowlevel->setReliabilitySlopeFunction(ReliabilitySlope);
lowlevel->setTimeConfidenceFunction(TimeConfidence);
lowlevel->setStates(states);
lowlevel->setHistoryLength(2);
lowlevel->setValueSetCounter(1);
/* ----------------------------- Do Something
* ---------------------------------------------------------------- */
std::cout << "Testing the lowlevel component with static feedback telling it "
"that the most lickely state is 2.\n";
for (int a = 0; a < 30; a++)
std::cout << "a: " << a << "\n"
<< (lowlevel->feedback({{0, 0}, {1, 0.3}, {2, 0.8}}),
lowlevel->getmostLikelyIdentifierAndReliability(a))
<< "\n";
std::cout << "---------------------------------------------------------------"
"---------------------------------\n";
std::cout << "------------------------------------High level "
"Test---------------------------------------------\n";
std::cout
<< "Configured in a way that the Master thinks that both Sensors "
"should have the same State.\n While feeding both the \"opposite\" "
"values one acending the other decending from the maximum.\n";
- std::unique_ptr<RangeConfidence<ReliabilityType, StateType, SensorValueType>>
+ std::shared_ptr<RangeConfidence<ReliabilityType, StateType, SensorValueType>>
Confidence2(new RangeConfidence<ReliabilityType, StateType,
SensorValueType>(
{{0, PartialFunction<double, double>(
{
{{0, 3},
std::make_shared<LinearFunction<double, double>>(
0, 1.0 / 3)},
{{3, 6},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{6, 9},
std::make_shared<LinearFunction<double, double>>(
3.0, -1.0 / 3)},
},
0)},
{1, PartialFunction<double, double>(
{
{{6, 9},
std::make_shared<LinearFunction<double, double>>(
-2, 1.0 / 3)},
{{9, 12},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{12, 15},
std::make_shared<LinearFunction<double, double>>(
5, -1.0 / 3)},
},
0)},
{2, PartialFunction<double, double>(
{
{{12, 15},
std::make_shared<LinearFunction<double, double>>(
-4, 1.0 / 3)},
{{15, 18},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{18, 21},
std::make_shared<LinearFunction<double, double>>(
7, -1.0 / 3)},
},
0)}}));
- std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>> Reliability2(
+ std::shared_ptr<Abstraction<SensorValueType, ReliabilityType>> Reliability2(
new LinearFunction<SensorValueType, ReliabilityType>(1, -1.0 / 9));
- std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>>
+ std::shared_ptr<Abstraction<SensorValueType, ReliabilityType>>
ReliabilitySlope2(
new LinearFunction<SensorValueType, ReliabilityType>(1, -1.0 / 9));
- std::unique_ptr<Abstraction<std::size_t, ReliabilityType>> TimeConfidence2(
+ std::shared_ptr<Abstraction<std::size_t, ReliabilityType>> TimeConfidence2(
new LinearFunction<std::size_t, ReliabilityType>(1, -1.0 / 9));
auto lowlevel2 =
new ReliabilityAndConfidenceCombinator<SensorValueType, StateType,
ReliabilityType>();
std::vector<long> states2;
states2.push_back(0);
states2.push_back(1);
states2.push_back(2);
lowlevel2->setConfidenceFunction(Confidence2);
lowlevel2->setReliabilityFunction(Reliability2);
lowlevel2->setReliabilitySlopeFunction(ReliabilitySlope2);
lowlevel2->setTimeConfidenceFunction(TimeConfidence2);
lowlevel2->setStates(states2);
lowlevel2->setHistoryLength(2);
lowlevel2->setValueSetCounter(1);
CrossCombinator<StateType, ReliabilityType> *highlevel =
new CrossCombinator<StateType, ReliabilityType>();
- std::unique_ptr<Abstraction<long, double>> func1(new PartialFunction<long, double>(
+ std::shared_ptr<Abstraction<long, double>> func1(new PartialFunction<long, double>(
{
{{0, 1}, std::make_shared<LinearFunction<long, double>>(1, 0)},
{{1, 2}, std::make_shared<LinearFunction<long, double>>(2, -1.0)},
},
0));
highlevel->addCrossReliabilityProfile(0, 1, func1);
highlevel->setCrossReliabilityCombinatorMethod(
CrossCombinator<StateType, ReliabilityType>::predefinedMethods::AVERAGE);
highlevel->setCrossReliabilityParameter(1);
highlevel->addIdentifiers(0, states);
highlevel->addIdentifiers(1, states);
for (int a = 0; a < 21; a++) {
auto out1 = lowlevel->getmostLikelyIdentifierAndReliability(a),
out2 = lowlevel2->getmostLikelyIdentifierAndReliability((int)21 - a);
std::cout << "s1: " << out1 << "\ns2:" << out2 << "\n";
std::vector<std::tuple<rosa::id_t, StateType, ReliabilityType>> tmp2;
tmp2.push_back({0, out1.Identifier, out1.Reliability});
tmp2.push_back({1, out2.Identifier, out2.Reliability});
auto out_o = highlevel->operator()(tmp2);
std::cout << "it: " << a << "\t rel: " << out_o.CrossReliability << "\n";
std::cout << "\t subs:\n";
for (auto q : out_o.CrossConfidence) {
std::cout << "\t\t id:" << q.first << "\n";
/*
for(auto z: q.second)
{
std::cout << "\t\t\t Identifier: " << z.Identifier << "\tRel: " << z.Reliability
<< "\n"; tmp.push_back({z.Identifier,z.Reliability});
}
*/
for (auto z : q.second) {
std::cout << "\t\t\t Identifier: " << z.Identifier << "\tRel: " << z.Reliability
<< "\n";
}
if (q.first == 0)
lowlevel->feedback(q.second);
else
lowlevel2->feedback(q.second);
}
}
/* ----------------------------- Cleanup
* --------------------------------------------------------------------- */
delete highlevel;
delete lowlevel;
delete lowlevel2;
}
\ No newline at end of file
diff --git a/include/rosa/agent/CrossCombinator.h b/include/rosa/agent/CrossCombinator.h
index f54a2e1..eef7c1c 100644
--- a/include/rosa/agent/CrossCombinator.h
+++ b/include/rosa/agent/CrossCombinator.h
@@ -1,554 +1,551 @@
//===-- rosa/delux/CrossReliability.h ---------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/delux/CrossReliability.h
///
/// \author Daniel Schnoell
///
/// \date 2019
///
/// \brief
///
/// \todo there is 1 exception that needs to be handled correctly.
/// \note the default search function is extremely slow maybe this could be done
/// via template for storage class and the functions/methods to efficiently find
/// the correct LinearFunction
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_CROSSRELIABILITY_H
#define ROSA_AGENT_CROSSRELIABILITY_H
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/ReliabilityConfidenceCombinator.h"
#include "rosa/core/forward_declarations.h" // needed for id_t
#include "rosa/support/log.h" // needed for error "handling"
// nedded headers
#include <string>
#include <type_traits> //assert
#include <vector>
// for static methods
#include <algorithm>
#include <numeric>
namespace rosa {
namespace agent {
template <typename id, typename IdentifierType, typename ReliabilityType>
std::vector<std::pair<id_t, IdentifierType>> &operator<<(
std::vector<std::pair<id_t, IdentifierType>> &me,
std::vector<std::tuple<id, IdentifierType, ReliabilityType>> Values) {
for (auto tmp : Values) {
std::pair<id, IdentifierType> tmp2;
tmp2.first = std::get<0>(tmp);
tmp2.second = std::get<1>(tmp);
me.push_back(tmp2);
}
return me;
}
/// This is the Combinator class for cross reliabilities it has many functions
/// with different purposes
/// \brief It takes the Identifiers and reliabilities of all given ids and
/// calculates the Reliability of them together. Also it can creates the
/// feedback that is needed by the \c ReliabilityAndConfidenceCombinator, which
/// is a kind of confidence.
///
/// \tparam IdentifierType Datatype of the Identifier ( Typically double or
/// float) \tparam ReliabilityType Datatype of the Reliability ( Typically
/// long or int)
///
/// \note This class is commonly in a master slave relationship as master with
/// \c ReliabilityAndConfidenceCombinator. The \c operator()() combines the
/// Reliability of all connected Slaves and uses that as its own Reliability
/// also creates the feedback for the Slaves.
///
/// \note more information about how the Reliability and feedback is
/// created at \c operator()() , \c getCombinedCrossReliability() , \c
/// getCombinedInputReliability() , \c getOutputReliability() [ this is the
/// commonly used Reliability ], \c getCrossConfidence() [ this is the feedback
/// for all Slaves ]
///
/// a bit more special Methods \c CrossConfidence() ,\c CrossReliability()
template <typename IdentifierType, typename ReliabilityType>
class CrossCombinator {
public:
static_assert(std::is_arithmetic<IdentifierType>::value,
"HighLevel: IdentifierType has to be an arithmetic type\n");
static_assert(std::is_arithmetic<ReliabilityType>::value,
"HighLevel: ReliabilityType has to be an arithmetic type\n");
// ---------------------------------------------------------------------------
// useful definitions
// ---------------------------------------------------------------------------
/// typedef To shorten the writing.
/// \c ConfOrRel
using ConfOrRel = ConfOrRel<IdentifierType, ReliabilityType>;
/// To shorten the writing.
using Abstraction =
typename rosa::agent::Abstraction<IdentifierType, ReliabilityType>;
/// The return type for the \c operator()() Method
struct returnType {
ReliabilityType CrossReliability;
std::map<id_t, std::vector<ConfOrRel>> CrossConfidence;
};
// -------------------------------------------------------------------------
// Relevant Methods
// -------------------------------------------------------------------------
/// Calculates the Reliability and the CrossConfidences for each id for all
/// of there Identifiers.
///
/// \param Values It gets the Identifiers and Reliabilities of
/// all connected Slaves inside a vector.
///
/// \return it returns a struct \c returnType containing the \c
/// getCombinedCrossReliability() and \c getCrossConfidence()
returnType operator()(
std::vector<std::tuple<id_t, IdentifierType, ReliabilityType>> Values) {
return {getOutputReliability(Values), getCrossConfidence(Values)};
}
/// returns the combined via \c CombinedCrossRelCombinationMethod \c
/// setCombinedCrossRelCombinationMethod() Cross Reliability for all ids \c
/// CrossReliability() \param Values the used Values
ReliabilityType getCombinedCrossReliability(
std::vector<std::tuple<id_t, IdentifierType, ReliabilityType>> Values) {
ReliabilityType combinedCrossRel = -1;
std::vector<std::pair<id_t, IdentifierType>> Agents;
Agents << Values;
for (auto Value : Values) {
id_t id = std::get<0>(Value);
IdentifierType sc = std::get<1>(Value);
// calculate the cross reliability for this slave agent
ReliabilityType realCrossReliabilityOfSlaveAgent =
CrossReliability({id, sc}, Agents);
if (combinedCrossRel != -1)
combinedCrossRel = CombinedCrossRelCombinationMethod(
combinedCrossRel, realCrossReliabilityOfSlaveAgent);
else
combinedCrossRel = realCrossReliabilityOfSlaveAgent;
}
return combinedCrossRel;
}
/// returns the combined via \c CombinedInputRelCombinationMethod \c
/// setCombinedInputRelCombinationMethod() input relibility \param Values the
/// used Values
ReliabilityType getCombinedInputReliability(
std::vector<std::tuple<id_t, IdentifierType, ReliabilityType>> Values) {
ReliabilityType combinedInputRel = -1;
std::vector<std::pair<id_t, IdentifierType>> Agents;
Agents << Values;
for (auto Value : Values) {
ReliabilityType rel = std::get<2>(Value);
if (combinedInputRel != -1)
combinedInputRel =
CombinedInputRelCombinationMethod(combinedInputRel, rel);
else
combinedInputRel = rel;
}
return combinedInputRel;
}
/// returns the combination via \c OutputReliabilityCombinationMethod \c
/// setOutputReliabilityCombinationMethod() of the Cross reliability and
/// input reliability \param Values the used Values
ReliabilityType getOutputReliability(
std::vector<std::tuple<id_t, IdentifierType, ReliabilityType>> Values) {
return OutputReliabilityCombinationMethod(
getCombinedInputReliability(Values),
getCombinedCrossReliability(Values));
}
/// retruns the crossConfidence for all ids \c CrossConfidence()
/// \param Values the used Values
std::map<id_t, std::vector<ConfOrRel>> getCrossConfidence(
std::vector<std::tuple<id_t, IdentifierType, ReliabilityType>> Values) {
std::vector<std::pair<id_t, IdentifierType>> Agents;
std::map<id_t, std::vector<ConfOrRel>> output;
std::vector<ConfOrRel> output_temporary;
Agents << Values;
for (auto Value : Values) {
id_t id = std::get<0>(Value);
output_temporary.clear();
for (IdentifierType thoIdentifier : Identifiers[id]) {
ConfOrRel data;
data.Identifier = thoIdentifier;
data.Reliability = CrossConfidence(id, thoIdentifier, Agents);
output_temporary.push_back(data);
}
output.insert({id, output_temporary});
}
return output;
}
/// Calculates the Cross Confidence
/// \brief it uses the Identifier value and calculates
/// the Confidence of a given agent( represented by there id ) for a given
/// Identifiers in connection to all other given agents
///
/// \note all combination of agents and there corresponding Cross Reliability
/// function have to be specified
ReliabilityType
CrossConfidence(id_t MainAgent, IdentifierType TheoreticalValue,
std::vector<std::pair<id_t, IdentifierType>> &SlaveAgents) {
ReliabilityType crossReliabiability;
std::vector<ReliabilityType> values;
for (std::pair<id_t, IdentifierType> SlaveAgent : SlaveAgents) {
if (SlaveAgent.first == MainAgent)
continue;
if (TheoreticalValue == SlaveAgent.second)
crossReliabiability = 1;
else
crossReliabiability =
1 / (crossReliabilityParameter *
AbsuluteValue(TheoreticalValue, SlaveAgent.second));
// profile reliability
ReliabilityType crossReliabilityFromProfile =
getCrossReliabilityFromProfile(
MainAgent, SlaveAgent.first,
AbsuluteValue(TheoreticalValue, SlaveAgent.second));
values.push_back(
std::max(crossReliabiability, crossReliabilityFromProfile));
}
return Method(values);
}
/// Calculates the Cross Reliability
/// \brief it uses the Identifier value and calculates
/// the Reliability of a given agent( represented by there id ) in connection
/// to all other given agents
///
/// \note all combination of agents and there corresponding Cross Reliability
/// function have to be specified
ReliabilityType
CrossReliability(std::pair<id_t, IdentifierType> &&MainAgent,
std::vector<std::pair<id_t, IdentifierType>> &SlaveAgents) {
ReliabilityType crossReliabiability;
std::vector<ReliabilityType> values;
for (std::pair<id_t, IdentifierType> SlaveAgent : SlaveAgents) {
if (SlaveAgent.first == MainAgent.first)
continue;
if (MainAgent.second == SlaveAgent.second)
crossReliabiability = 1;
else
crossReliabiability =
1 / (crossReliabilityParameter *
AbsuluteValue(MainAgent.second, SlaveAgent.second));
// profile reliability
ReliabilityType crossReliabilityFromProfile =
getCrossReliabilityFromProfile(
MainAgent.first, SlaveAgent.first,
AbsuluteValue(MainAgent.second, SlaveAgent.second));
values.push_back(
std::max(crossReliabiability, crossReliabilityFromProfile));
}
return Method(values);
}
// --------------------------------------------------------------------------
// Defining the class
// --------------------------------------------------------------------------
/// adds a Cross Reliability Profile used to get the Reliability of the
/// Identifier difference
///
/// \param idA The id of the one \c Agent ( idealy the id of \c Unit to make
/// it absolutly unique )
///
/// \param idB The id of the other \c Agent
///
- /// \param Function A unique pointer to an \c Abstraction it would use the
+ /// \param Function A shared pointer to an \c Abstraction it would use the
/// difference in Identifier for its input
void addCrossReliabilityProfile(id_t idA, id_t idB,
- std::unique_ptr<Abstraction> &Function) {
- Abstraction *ptr = Function.release();
- Functions.push_back({true, idA, idB, ptr});
+ std::shared_ptr<Abstraction> &Function) {
+ Functions.push_back({true, idA, idB, Function});
}
/// sets the cross reliability parameter
void setCrossReliabilityParameter(ReliabilityType val) {
crossReliabilityParameter = val;
}
/// This is the adder for the Identifiers
/// \param id The id of the Agent of the Identifiers
/// \param Identifiers id specific Identifiers. this will be copied So that if
/// Slaves have different Identifiers they can be used correctly. \brief The
/// Identifiers of all connected lowlevel Agents has to be known to be able to
/// iterate over them
void addIdentifiers(id_t id, std::vector<IdentifierType> Identifiers) {
this->Identifiers.insert({id, Identifiers});
}
// -------------------------------------------------------------------------
// Combinator Settings
// -------------------------------------------------------------------------
/// sets the used method to combine the values
/// \param Meth The Function which defines the combination method. predef: \c
/// CONJUNCTION() \c AVERAGE() \c DISJUNCTION()
void setCrossReliabilityCombinatorMethod(
std::function<ReliabilityType(std::vector<ReliabilityType> values)>
Meth) {
Method = Meth;
}
/// sets the combination method for the combined cross reliability
/// \param Meth the method which should be used. predef: \c
/// CombinedCrossRelCombinationMethodMin() \c
/// CombinedCrossRelCombinationMethodMax() \c
/// CombinedCrossRelCombinationMethodMult() \c
/// CombinedCrossRelCombinationMethodAverage()
void setCombinedCrossRelCombinationMethod(
std::function<ReliabilityType(ReliabilityType, ReliabilityType)> Meth) {
CombinedCrossRelCombinationMethod = Meth;
}
/// sets the combined input rel method
/// \param Meth the method which should be used predef: \c
/// CombinedInputRelCombinationMethodMin() \c
/// CombinedInputRelCombinationMethodMax() \c
/// CombinedInputRelCombinationMethodMult() \c
/// CombinedInputRelCombinationMethodAverage()
void setCombinedInputRelCombinationMethod(
std::function<ReliabilityType(ReliabilityType, ReliabilityType)> Meth) {
CombinedInputRelCombinationMethod = Meth;
}
/// sets the used OutputReliabilityCombinationMethod
/// \param Meth the used Method. predef: \c
/// OutputReliabilityCombinationMethodMin() \c
/// OutputReliabilityCombinationMethodMax() \c
/// OutputReliabilityCombinationMethodMult() \c
/// OutputReliabilityCombinationMethodAverage()
void setOutputReliabilityCombinationMethod(
std::function<ReliabilityType(ReliabilityType, ReliabilityType)> Meth) {
OutputReliabilityCombinationMethod = Meth;
}
// -------------------------------------------------------------------------
// Predefined Functions
// -------------------------------------------------------------------------
/// predefined combination method
struct predefinedMethods {
static ReliabilityType CONJUNCTION(std::vector<ReliabilityType> values) {
return *std::min_element(values.begin(), values.end());
}
/// predefined combination method
static ReliabilityType AVERAGE(std::vector<ReliabilityType> values) {
return std::accumulate(values.begin(), values.end(), 0.0) / values.size();
}
/// predefined combination method
static ReliabilityType DISJUNCTION(std::vector<ReliabilityType> values) {
return *std::max_element(values.begin(), values.end());
}
/// predefined combination Method
static ReliabilityType
CombinedCrossRelCombinationMethodMin(ReliabilityType A, ReliabilityType B) {
return std::min(A, B);
}
/// predefined combination Method
static ReliabilityType
CombinedCrossRelCombinationMethodMax(ReliabilityType A, ReliabilityType B) {
return std::max(A, B);
}
/// predefined combination Method
static ReliabilityType
CombinedCrossRelCombinationMethodMult(ReliabilityType A,
ReliabilityType B) {
return A * B;
}
/// predefined combination Method
static ReliabilityType
CombinedCrossRelCombinationMethodAverage(ReliabilityType A,
ReliabilityType B) {
return (A + B) / 2;
}
/// predefined combination Method
static ReliabilityType
CombinedInputRelCombinationMethodMin(ReliabilityType A, ReliabilityType B) {
return std::min(A, B);
}
/// predefined combination Method
static ReliabilityType
CombinedInputRelCombinationMethodMax(ReliabilityType A, ReliabilityType B) {
return std::max(A, B);
}
/// predefined combination Method
static ReliabilityType
CombinedInputRelCombinationMethodMult(ReliabilityType A,
ReliabilityType B) {
return A * B;
}
/// predefined combination Method
static ReliabilityType
CombinedInputRelCombinationMethodAverage(ReliabilityType A,
ReliabilityType B) {
return (A + B) / 2;
}
/// predefined combination method
static ReliabilityType
OutputReliabilityCombinationMethodMin(ReliabilityType A,
ReliabilityType B) {
return std::min(A, B);
}
/// predefined combination method
static ReliabilityType
OutputReliabilityCombinationMethodMax(ReliabilityType A,
ReliabilityType B) {
return std::max(A, B);
}
/// predefined combination method
static ReliabilityType
OutputReliabilityCombinationMethodMult(ReliabilityType A,
ReliabilityType B) {
return A * B;
}
/// predefined combination method
static ReliabilityType
OutputReliabilityCombinationMethodAverage(ReliabilityType A,
ReliabilityType B) {
return (A + B) / 2;
}
};
// -------------------------------------------------------------------------
// Cleanup
// -------------------------------------------------------------------------
~CrossCombinator() {
- for (auto tmp : Functions)
- delete tmp.Funct;
Functions.clear();
}
// --------------------------------------------------------------------------
// Needed stuff and stored stuff
// --------------------------------------------------------------------------
private:
struct Functionblock {
bool exists = false;
id_t A;
id_t B;
- Abstraction *Funct;
+ std::shared_ptr<Abstraction> Funct;
};
std::map<id_t, std::vector<IdentifierType>> Identifiers;
/// From Maxi in his code defined as 1 can be changed by set
ReliabilityType crossReliabilityParameter = 1;
/// Stored Cross Reliability Functions
std::vector<Functionblock> Functions;
/// Method which is used to combine the generated values
std::function<ReliabilityType(std::vector<ReliabilityType>)> Method =
predefinedMethods::AVERAGE;
std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
CombinedCrossRelCombinationMethod =
predefinedMethods::CombinedCrossRelCombinationMethodMin;
std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
CombinedInputRelCombinationMethod =
predefinedMethods::CombinedInputRelCombinationMethodMin;
std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
OutputReliabilityCombinationMethod =
predefinedMethods::OutputReliabilityCombinationMethodMin;
//--------------------------------------------------------------------------------
// helper function
/// evaluates the absolute Value of two values
/// \note this is actually the absolute distance but to keep it somewhat
/// conform with maxis code
template <typename Type_t> Type_t AbsuluteValue(Type_t A, Type_t B) {
return ((A - B) < 0) ? B - A : A - B;
}
/// very inefficient searchFunction
Functionblock (*searchFunction)(std::vector<Functionblock> vect,
const id_t nameA, const id_t nameB) =
[](std::vector<Functionblock> vect, const id_t nameA,
const id_t nameB) -> Functionblock {
for (Functionblock tmp : vect) {
if (tmp.A == nameA && tmp.B == nameB)
return tmp;
if (tmp.A == nameB && tmp.B == nameA)
return tmp;
}
return Functionblock();
};
/// evaluates the corresponding LinearFunction with the Identifier difference
/// \param nameA these two parameters are the unique identifiers
/// \param nameB these two parameters are the unique identifiers
/// for the LinerFunction
///
/// \note it doesn't matter if they are swapped
ReliabilityType
getCrossReliabilityFromProfile(id_t nameA, id_t nameB,
IdentifierType IdentifierDifference) {
Functionblock block = searchFunction(Functions, nameA, nameB);
if (!block.exists) {
LOG_ERROR(("CrossReliability: Block:" + std::to_string(nameA) + "," +
std::to_string(nameB) + "doesn't exist returning 0"));
return 0;
}
return block.Funct->operator()(IdentifierDifference);
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_CROSSRELIABILITY_H
\ No newline at end of file
diff --git a/include/rosa/agent/ReliabilityConfidenceCombinator.h b/include/rosa/agent/ReliabilityConfidenceCombinator.h
index 53b16cb..e4f4384 100644
--- a/include/rosa/agent/ReliabilityConfidenceCombinator.h
+++ b/include/rosa/agent/ReliabilityConfidenceCombinator.h
@@ -1,743 +1,743 @@
//===-- rosa/agent/ReliabilityConfidenceCombinator.h ------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/ReliabilityConfidenceCombinator.h
///
/// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *ReliabilityConfidenceCombinator* *functionality*.
///
/// \note based on Maximilian Goetzinger (maxgot@utu.fi) code in
/// CAM_Dirty_include SA-EWS2_Version... inside Agent.cpp
///
/// \note By defining and setting Reliability_trace_level it is possible to
/// change the level to which it should be traced. \note All classes throw
/// runtime errors if not all things are set
///
/// \note should the Reliability be capped?
///
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_ReliabilityConfidenceCombinator_H
#define ROSA_AGENT_ReliabilityConfidenceCombinator_H
#include "rosa/core/forward_declarations.h" // needed for id_t
#include "rosa/support/log.h"
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/RangeConfidence.hpp"
#include <algorithm>
#include <functional>
#include <type_traits>
#include <vector>
/// 0 everything
/// 1 vectors
/// 2 outputs
#define trace_everything 0
#define trace_vectors 1
#define trace_outputs 2
#ifndef Reliability_trace_level
#define Reliability_trace_level 0
#endif
#define trace_end "\n\n\n"
namespace rosa {
namespace agent {
/// This is a struct with a few methods that make Reliability Combinator
/// more readable \tparam IdentifierType The datatype of the States \tparam
/// ReliabilityType The datatype of the Reliability
template <typename IdentifierType, typename ReliabilityType> struct ConfOrRel {
/// making both Template Arguments readable to make a few things easier
using _IdentifierType = IdentifierType;
/// making both Template Arguments readable to make a few things easier
using _ReliabilityType = ReliabilityType;
/// The actual place where the data is stored
IdentifierType Identifier;
/// The actual place where the data is stored
ReliabilityType Reliability;
ConfOrRel(IdentifierType _Identifier, ReliabilityType _Reliability)
: Identifier(_Identifier), Reliability(_Reliability){};
ConfOrRel(){};
/// Pushes the Data in a Human readable form
/// \param out The stream where it is written to
/// \param c The struct itself
friend std::ostream &operator<<(std::ostream &out, const ConfOrRel &c) {
out << "Identifier: " << c.Identifier << "\t Reliability: " << c.Reliability
<< " ";
return out;
}
/// needed or it throws an clang diagnosic error
using map =
std::map<IdentifierType, ReliabilityType>; // needed or it throws an
// clang diagnosic error
/// Filles the vector with the data inside the map
/// \param me The vector to be filled
/// \param data The data wich is to be pushed into the vector
friend std::vector<ConfOrRel> &operator<<(std::vector<ConfOrRel> &me,
map &&data) {
for (auto tmp : data) {
me.push_back(ConfOrRel(tmp.first, tmp.second));
#if Reliability_trace_level <= trace_everything
LOG_TRACE_STREAM << "\n" << ConfOrRel(tmp.first, tmp.second) << trace_end;
#endif
}
return me;
}
/// This is to push the data inside a vector in a human readable way into the
/// ostream \param out The ostream \param c The vector which is read
friend std::ostream &operator<<(std::ostream &out,
const std::vector<ConfOrRel> &c) {
std::size_t index = 0;
for (ConfOrRel data : c) {
out << index << " : " << data << "\n";
index++;
}
return out;
}
};
/// This is the combinator for Reliability and confidences it takes the
/// Sensor value, its "History" and feedback from \c
/// CrossCombinator to calculate different Reliabilities.
/// \tparam SensorValueType Datatype of the Sensor value ( Typically
/// double or float) \tparam IdentifierType Datatype of the State ( Typically
/// long or int)
/// \tparam ReliabilityType Datatype of the Reliability (
/// Typically double or float)
///
/// \note more information about how it calculates
/// the Reliabilities it should be considered feedback is a sort of Confidence
/// \verbatim
///----------------------------------------------------------------------------------
///
///
/// ->Reliability---> getInputReliability()
/// | |
/// | V
/// Sensor Value ---| PossibleIdentifierCombinationMethod -> next line
/// | A |
/// | | V
/// ->Confidence--- getPossibleIdentifiers()
///
///-----------------------------------------------------------------------------------
///
/// feedback
/// |
/// V
/// ValuesFromMaster
/// | -> History ---|
/// V | V
/// here -> FeedbackCombinatorMethod --------> HistoryCombinatorMethod->nextline
/// | |
/// V V
/// getpossibleIdentifiersWithMasterFeedback()getPossibleIdentifiersWithHistory()
///
///----------------------------------------------------------------------------------
///
/// here -> sort -> most likely -> getmostLikelyIdentifierAndReliability()
///
///---------------------------------------------------------------------------------
/// \endverbatim
/// the mentioned methods are early outs so if two ore more of them are run in
/// the same step they will be interpreted as different time steps
/// <pre>
/// Default values for Combinators:
/// InputReliabilityCombinator = combinationMin;
/// PossibleIdentifierCombinationMethod=PossibleIdentifierCombinationMethodMin;
/// FeedbackCombinatorMethod = FeedbackCombinatorMethodAverage;
/// HistoryCombinatorMethod = HistoryCombinatorMethodMax;
/// </pre>
/// To understand the place where the combinator methods come into play a list
/// for each getter which Methods are used.
///
/// <pre>
/// \c getInputReliability():
/// -InputReliabilityCombinator
/// \c getPossibleIdentifiers():
/// -InputReliabilityCombinator
/// -PossibleIdentifierCombinationMethod
/// \c getpossibleIdentifiersWithMasterFeedback():
/// -InputReliabilityCombinator
/// -PossibleIdentifierCombinationMethod
/// -FeedbackCombinatorMethod
/// \c getPossibleIdentifiersWithHistory():
/// -InputReliabilityCombinator
/// -PossibleIdentifierCombinationMethod
/// -FeedbackCombinatorMethod
/// -HistoryCombinatorMethod
/// \c getmostLikelyIdentifierAndReliability():
/// -InputReliabilityCombinator
/// -PossibleIdentifierCombinationMethod
/// -FeedbackCombinatorMethod
/// -HistoryCombinatorMethod
/// </pre>
template <typename SensorValueType, typename IdentifierType,
typename ReliabilityType>
class ReliabilityAndConfidenceCombinator {
public:
static_assert(std::is_arithmetic<SensorValueType>::value,
"LowLevel: SensorValueType has to an arithmetic type\n");
static_assert(std::is_arithmetic<IdentifierType>::value,
"LowLevel: IdentifierType has to an arithmetic type\n");
static_assert(std::is_arithmetic<ReliabilityType>::value,
"LowLevel: ReliabilityType has to an arithmetic type\n");
/// Typedef to shorten the writing.
/// \c ConfOrRel
using ConfOrRel = ConfOrRel<IdentifierType, ReliabilityType>;
/// Calculates the input reliability by combining Reliability of the Sensor
/// and the Slope Reliability \param SensorValue The sensor Value \note to set
/// the combination method \c setInputReliabilityCombinator()
ReliabilityType getInputReliability(SensorValueType SensorValue) {
ReliabilityType inputReliability =
getReliability(SensorValue, previousSensorValue, valueSetCounter);
previousSensorValue = SensorValue;
PreviousSensorValueExists = true;
return inputReliability;
}
/// Calculates the possible Identifiers
/// \param SensorValue the Sensor Value
/// \brief it combines the input reliability and the confidence of the Sensor.
/// The use combination method can be set using \c
/// setPossibleIdentifierCombinationMethod()
std::vector<ConfOrRel> getPossibleIdentifiers(SensorValueType SensorValue) {
std::vector<ConfOrRel> possibleIdentifiers;
ReliabilityType inputReliability = getInputReliability(SensorValue);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
#endif
possibleIdentifiers << Confidence->operator()(SensorValue);
possibleIdentifiers = PossibleIdentifierCombinationMethod(
possibleIdentifiers, inputReliability);
return possibleIdentifiers;
}
/// return the Possible Values with the feedback in mind
/// \param SensorValue The sensor Value
/// \brief it combines the input reliability and the confidence of the Sensor.
/// The combines them with FeedbackCombinatorMethod and returns the result.
std::vector<ConfOrRel>
getpossibleIdentifiersWithMasterFeedback(SensorValueType SensorValue) {
std::vector<ConfOrRel> possibleIdentifiers;
ReliabilityType inputReliability = getInputReliability(SensorValue);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
#endif
possibleIdentifiers << Confidence->operator()(SensorValue);
possibleIdentifiers = PossibleIdentifierCombinationMethod(
possibleIdentifiers, inputReliability);
possibleIdentifiers =
FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster);
return possibleIdentifiers;
}
/// returns all possible Identifiers and Reliabilities with the History in
/// mind \param SensorValue the Sensor value how this is done is described at
/// the class.
std::vector<ConfOrRel>
getPossibleIdentifiersWithHistory(SensorValueType SensorValue) {
std::vector<ConfOrRel> ActuallPossibleIdentifiers;
std::vector<ConfOrRel> possibleIdentifiers;
ReliabilityType inputReliability = getInputReliability(SensorValue);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
#endif
possibleIdentifiers << Confidence->operator()(SensorValue);
possibleIdentifiers = PossibleIdentifierCombinationMethod(
possibleIdentifiers, inputReliability);
possibleIdentifiers =
FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster);
saveInHistory(possibleIdentifiers);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n"
<< possibleIdentifiers << trace_end;
LOG_TRACE_STREAM << "\npossibleIdentifiers:\n"
<< possibleIdentifiers << trace_end;
#endif
possibleIdentifiers.clear();
return getAllPossibleIdentifiersBasedOnHistory();
}
/// Calculates the Reliability
/// \param SensorValue The current Values of the Sensor
///
/// \return Reliability and Identifier of the current SensorValue
///
ConfOrRel getmostLikelyIdentifierAndReliability(SensorValueType SensorValue) {
#if Reliability_trace_level <= trace_outputs
LOG_TRACE_STREAM << "\nTrace level is set to: " << Reliability_trace_level
<< "\n"
<< "Will trace: "
<< ((Reliability_trace_level == trace_outputs)
? "outputs"
: (Reliability_trace_level == trace_vectors)
? "vectors"
: (Reliability_trace_level ==
trace_everything)
? "everything"
: "undefined")
<< trace_end;
#endif
std::vector<ConfOrRel> ActuallPossibleIdentifiers;
std::vector<ConfOrRel> possibleIdentifiers;
ReliabilityType inputReliability = getInputReliability(SensorValue);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
#endif
possibleIdentifiers << Confidence->operator()(SensorValue);
possibleIdentifiers = PossibleIdentifierCombinationMethod(
possibleIdentifiers, inputReliability);
possibleIdentifiers =
FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster);
saveInHistory(possibleIdentifiers);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n"
<< possibleIdentifiers << trace_end;
LOG_TRACE_STREAM << "\npossibleIdentifiers:\n"
<< possibleIdentifiers << trace_end;
#endif
possibleIdentifiers.clear();
possibleIdentifiers = getAllPossibleIdentifiersBasedOnHistory();
std::sort(possibleIdentifiers.begin(), possibleIdentifiers.end(),
[](ConfOrRel A, ConfOrRel B) -> bool {
return A.Reliability > B.Reliability;
});
#if Reliability_trace_level <= trace_outputs
LOG_TRACE_STREAM << "\noutput lowlevel: " << possibleIdentifiers.at(0)
<< trace_end;
#endif
return possibleIdentifiers.at(0);
}
/// feedback for this functionality most commonly it comes from a Master Agent
/// \param ValuesFromMaster The Identifiers + Reliability for the feedback
/// \brief This input kind of resembles a confidence but not
/// directly it more or less says: compared to the other Identifiers inside
/// the System these are the Identifiers with the Reliability that you have.
void feedback(std::vector<ConfOrRel> ValuesFromMaster) {
this->ValuesFromMaster = ValuesFromMaster;
}
//
// ----------------------Reliability and Confidence Function setters----------
//
/// This is the setter for Confidence Function
/// \param Confidence A pointer to the Functional for the \c Confidence of the
/// Sensor value
void setConfidenceFunction(
- std::unique_ptr<RangeConfidence<ReliabilityType, IdentifierType,
+ std::shared_ptr<RangeConfidence<ReliabilityType, IdentifierType,
SensorValueType>> &Confidence) {
- this->Confidence = std::move(Confidence);
+ this->Confidence = Confidence;
}
/// This is the setter for Reliability Function
/// \param Reliability A pointer to the Functional for the Reliability
/// \brief The Reliability takes the current Sensor value and return the
/// Reliability of the value.
void setReliabilityFunction(
- std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>>
+ std::shared_ptr<Abstraction<SensorValueType, ReliabilityType>>
&Reliability) {
- this->Reliability = std::move(Reliability);
+ this->Reliability = Reliability;
}
/// This is the setter for ReliabilitySlope Function
/// \param ReliabilitySlope A pointer to the Functional for the
/// ReliabilitySlope
/// \brief The ReliabilitySlope takes the difference of the current Sensor
/// Value to the last one and tells you how likely the change is.
void setReliabilitySlopeFunction(
- std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>>
+ std::shared_ptr<Abstraction<SensorValueType, ReliabilityType>>
&ReliabilitySlope) {
- this->ReliabilitySlope = std::move(ReliabilitySlope);
+ this->ReliabilitySlope = ReliabilitySlope;
}
/// This is the setter for TimeConfidence Function
/// \param TimeConfidence A pointer to the Functional for the TimeConfidence
/// \brief The time function takes the position in the History with greater
/// equals older and return a Reliability of how "relevant" it is.
void setTimeConfidenceFunction(
- std::unique_ptr<Abstraction<std::size_t, ReliabilityType>>
+ std::shared_ptr<Abstraction<std::size_t, ReliabilityType>>
&TimeConfidence) {
- this->TimeConfidence = std::move(TimeConfidence);
+ this->TimeConfidence = TimeConfidence;
}
/// This is the setter for all possible States
/// \param states A vector containing all states
/// \brief This exists even though \c State Type is an arithmetic Type because
/// the states do not need to be "next" to each other ( ex. states={ 1 7 24 })
void setStates(std::vector<IdentifierType> states) { this->States = states; }
/// This sets the Maximum length of the History
/// \param length The length
void setHistoryLength(std::size_t length) { this->HistoryMaxSize = length; }
/// This sets the Value set Counter
/// \param ValueSetCounter the new Value
/// \note This might actually be only an artifact. It is only used to get the
/// reliability from the \c ReliabilitySlope [ ReliabilitySlope->operator()(
/// (lastValue - actualValue) / (SensorValueType)valueSetCounter) ]
void setValueSetCounter(unsigned int ValueSetCounter) {
this->valueSetCounter = ValueSetCounter;
}
//
// ----------------combinator setters-----------------------------------------
//
/// This sets the combination method used by the History
/// \param Meth the method which should be used. predefined \c
/// HistoryCombinatorMethodMin() \c HistoryCombinatorMethodMax() \c
/// HistoryCombinatorMethodMult() \c HistoryCombinatorMethodAverage()
void setHistoryCombinatorMethod(
std::function<ReliabilityType(ReliabilityType, ReliabilityType)> Meth) {
HistoryCombinatorMethod = Meth;
}
/// sets the predefined method for the combination of the possible Identifiers
/// and the master \param Meth the method predefined ones are \c
/// FeedbackCombinatorMethodAverage() \c FeedbackCombinatorMethodMin() \c
/// FeedbackCombinatorMethodMax() \c FeedbackCombinatorMethodMult()
void setFeedbackCombinatorMethod(
std::function<std::vector<ConfOrRel>(std::vector<ConfOrRel>,
std::vector<ConfOrRel>)>
Meth) {
FeedbackCombinatorMethod = Meth;
}
/// Sets the used combination method for Possible Identifiers
/// \param Meth a Pointer for the used Method. Predefined methods \c
/// PossibleIdentifierCombinationMethodMin() \c
/// PossibleIdentifierCombinationMethodMax() \c
/// PossibleIdentifierCombinationMethodAverage()
void setPossibleIdentifierCombinationMethod(
std::function<std::vector<ConfOrRel>(std::vector<ConfOrRel>,
ReliabilityType)>
Meth) {
PossibleIdentifierCombinationMethod = Meth;
}
/// sets the input reliability combinator method
/// \param method the to be used method
/// \note there are predefined methods \c combinationMin() \c combinationMax()
/// \c combinationAverage()
void setInputReliabilityCombinator(
std::function<ReliabilityType(ReliabilityType, ReliabilityType)> method) {
InputReliabilityCombinator = method;
}
//
// ----------------predefined combinators------------------------------------
//
struct predefinedMethods {
/// predefined Method
static ReliabilityType HistoryCombinatorMethodMin(ReliabilityType A,
ReliabilityType B) {
return std::min(A, B);
}
/// predefined Method
static ReliabilityType HistoryCombinatorMethodMax(ReliabilityType A,
ReliabilityType B) {
return std::max(A, B);
}
/// predefined Method
static ReliabilityType HistoryCombinatorMethodMult(ReliabilityType A,
ReliabilityType B) {
return A * B;
}
/// predefined Method
static ReliabilityType HistoryCombinatorMethodAverage(ReliabilityType A,
ReliabilityType B) {
return (A + B) / 2;
}
/// predefined method
static std::vector<ConfOrRel>
FeedbackCombinatorMethodAverage(std::vector<ConfOrRel> A,
std::vector<ConfOrRel> B) {
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Reliability =
(tmp_me.Reliability + tmp_other.Reliability) / 2;
}
}
return A;
}
/// predefined method
static std::vector<ConfOrRel>
FeedbackCombinatorMethodMin(std::vector<ConfOrRel> A,
std::vector<ConfOrRel> B) {
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Reliability =
std::min(tmp_me.Reliability + tmp_other.Reliability);
}
}
return A;
}
/// predefined method
static std::vector<ConfOrRel>
FeedbackCombinatorMethodMax(std::vector<ConfOrRel> A,
std::vector<ConfOrRel> B) {
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Reliability =
std::max(tmp_me.Reliability + tmp_other.Reliability);
}
}
return A;
}
/// predefined method
static std::vector<ConfOrRel>
FeedbackCombinatorMethodMult(std::vector<ConfOrRel> A,
std::vector<ConfOrRel> B) {
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Reliability = tmp_me.Reliability * tmp_other.Reliability;
}
}
return A;
}
/// Predefined combination method for possible Identifiers
static std::vector<ConfOrRel>
PossibleIdentifierCombinationMethodMin(std::vector<ConfOrRel> A,
ReliabilityType B) {
for (auto tmp : A)
tmp.Reliability = std::min(tmp.Reliability, B);
return A;
}
/// Predefined combination method for possible Identifiers
static std::vector<ConfOrRel>
PossibleIdentifierCombinationMethodMax(std::vector<ConfOrRel> A,
ReliabilityType B) {
for (auto tmp : A)
tmp.Reliability = std::max(tmp.Reliability, B);
return A;
}
/// Predefined combination method for possible Identifiers
static std::vector<ConfOrRel>
PossibleIdentifierCombinationMethodAverage(std::vector<ConfOrRel> A,
ReliabilityType B) {
for (auto tmp : A)
tmp.Reliability = (tmp.Reliability + B) / 2;
return A;
}
/// Predefined combination method for possible Identifiers
static std::vector<ConfOrRel>
PossibleIdentifierCombinationMethodMult(std::vector<ConfOrRel> A,
ReliabilityType B) {
for (auto tmp : A)
tmp.Reliability = tmp.Reliability * B / 2;
return A;
}
/// The predefined min combinator method
static ReliabilityType combinationMin(ReliabilityType A,
ReliabilityType B) {
return std::min(A, B);
}
/// The predefined max combinator method
static ReliabilityType combinationMax(ReliabilityType A,
ReliabilityType B) {
return std::max(A, B);
}
/// The predefined average combinator method
static ReliabilityType combinationAverage(ReliabilityType A,
ReliabilityType B) {
return (A + B) / 2;
}
/// The predefined average combinator method
static ReliabilityType combinationMult(ReliabilityType A,
ReliabilityType B) {
return A * B;
}
};
// ----------------------------------------------------------------
// Stored Values
// ----------------------------------------------------------------
private:
std::vector<std::vector<ConfOrRel>> History;
std::size_t HistoryMaxSize;
std::vector<ConfOrRel> ValuesFromMaster;
SensorValueType previousSensorValue;
unsigned int valueSetCounter;
std::vector<IdentifierType> States;
bool PreviousSensorValueExists = false;
- std::unique_ptr<
+ std::shared_ptr<
RangeConfidence<ReliabilityType, IdentifierType, SensorValueType>>
Confidence;
- std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>> Reliability;
- std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>>
+ std::shared_ptr<Abstraction<SensorValueType, ReliabilityType>> Reliability;
+ std::shared_ptr<Abstraction<SensorValueType, ReliabilityType>>
ReliabilitySlope;
- std::unique_ptr<Abstraction<std::size_t, ReliabilityType>> TimeConfidence;
+ std::shared_ptr<Abstraction<std::size_t, ReliabilityType>> TimeConfidence;
// combination functions
std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
InputReliabilityCombinator = predefinedMethods::combinationMin;
std::function<std::vector<ConfOrRel>(std::vector<ConfOrRel>, ReliabilityType)>
PossibleIdentifierCombinationMethod =
predefinedMethods::PossibleIdentifierCombinationMethodMin;
std::function<std::vector<ConfOrRel>(std::vector<ConfOrRel>,
std::vector<ConfOrRel>)>
FeedbackCombinatorMethod =
predefinedMethods::FeedbackCombinatorMethodAverage;
std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
HistoryCombinatorMethod = predefinedMethods::HistoryCombinatorMethodMax;
// ---------------------------------------------------------------------------
// needed Functions
// ---------------------------------------------------------------------------
/// returns the Reliability
/// \param actualValue The Value of the Sensor
/// \param lastValue of the Sensor this is stored in the class
/// \param valueSetCounter It has an effect on the difference of the current
/// and last value This might not be needed anymore
/// \brief it returns the combination the \c Reliability function and \c
/// ReliabilitySlope if the previous value exists. if it doesn't it only
/// returns the \c Reliability function value.
ReliabilityType getReliability(SensorValueType actualValue,
SensorValueType lastValue,
unsigned int valueSetCounter) {
ReliabilityType relAbs = Reliability->operator()(actualValue);
if (PreviousSensorValueExists) {
ReliabilityType relSlo = ReliabilitySlope->operator()(
(lastValue - actualValue) / (SensorValueType)valueSetCounter);
return InputReliabilityCombinator(relAbs, relSlo);
} else
return relAbs;
}
/// adapts the possible Identifiers by checking the History and combines those
/// values. currently with max
/// \brief combines the historic values with the \c TimeConfidence function
/// and returns the maximum Reliability for all Identifiers.
std::vector<ConfOrRel> getAllPossibleIdentifiersBasedOnHistory() {
// iterate through all history entries
std::size_t posInHistory = 0;
std::vector<ConfOrRel> possibleIdentifiers;
for (auto pShE = History.begin(); pShE < History.end();
pShE++, posInHistory++) {
// iterate through all possible Identifiers of each history entry
for (ConfOrRel &pSh : *pShE) {
IdentifierType historyIdentifier = pSh.Identifier;
ReliabilityType historyConf = pSh.Reliability;
historyConf = historyConf * TimeConfidence->operator()(posInHistory);
bool foundIdentifier = false;
for (ConfOrRel &pS : possibleIdentifiers) {
if (pS.Identifier == historyIdentifier) {
pS.Reliability =
HistoryCombinatorMethod(pS.Reliability, historyConf);
foundIdentifier = true;
}
}
if (foundIdentifier == false) {
ConfOrRel possibleIdentifier;
possibleIdentifier.Identifier = historyIdentifier;
possibleIdentifier.Reliability = historyConf;
possibleIdentifiers.push_back(possibleIdentifier);
}
}
}
return possibleIdentifiers;
}
/// saves the Identifiers in the History
/// \brief It checks the incoming Identifiers if any have a Reliability
/// greater than 0.5 all of them get saved inside the History and then the
/// History get shortened to the maximal length. It only saves the Value if
/// the History is empty.
///
/// \param actualPossibleIdentifiers The Identifiers which should be saved
///
/// \note Does the History really make sense if the values are to small it
/// only stores something if it's empty and not if it isn't completely filled
void saveInHistory(std::vector<ConfOrRel> actualPossibleIdentifiers) {
// check if the reliability of at least one possible Identifier is high
// enough
bool atLeastOneRelIsHigh = false;
for (ConfOrRel pS : actualPossibleIdentifiers) {
if (pS.Reliability > 0.5) {
atLeastOneRelIsHigh = true;
}
}
// save possible Identifiers if at least one possible Identifier is high
// enough (or if the history is empty)
if (History.size() < 1 || atLeastOneRelIsHigh == true) {
History.insert(History.begin(), actualPossibleIdentifiers);
// if history size is higher than allowed, save oldest element
while (History.size() > HistoryMaxSize) {
// delete possibleIdentifierHistory.back();
History.pop_back();
}
}
}
};
} // namespace agent
} // namespace rosa
#endif // !ROSA_AGENT_ReliabilityConfidenceCombinator_H
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sun, Mar 16, 10:44 AM (1 d, 20 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
129105
Default Alt Text
(61 KB)
Attached To
Mode
R20 SoC_Rosa_repo
Attached
Detach File
Event Timeline
Log In to Comment