Page Menu
Home
Phorge
Search
Configure Global Search
Log In
Files
F386317
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Size
46 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/apps/ccam/ccam.cpp b/apps/ccam/ccam.cpp
index c110fe7..36f5bee 100644
--- a/apps/ccam/ccam.cpp
+++ b/apps/ccam/ccam.cpp
@@ -1,531 +1,532 @@
//===-- apps/ccam/ccam.cpp --------------------------------------*- C++ -*-===//
//
// The RoSA Framework -- Application CCAM
//
// Distributed under the terms and conditions of the Boost Software
/// License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file apps/ccam/ccam.cpp
///
/// \author Maximilian Goetzinger (maximilian.goetzinger@tuwien.ac.at)
/// \author Benedikt Tutzer (benedikt.tutzer@tuwien.ac.at)
///
/// \date 2019
///
/// \brief The application CCAM implements the case study from the paper:
/// M. Goetzinger, N. TaheriNejad, H. A. Kholerdi, A. Jantsch, E. Willegger,
/// T. Glatzl, A.M. Rahmani, T.Sauter, P. Liljeberg: Model - Free Condition
/// Monitoring with Confidence
///
/// \todo Clean up source files of this app: add standard RoSA header comment
/// for own files and do something with 3rd party files...
//===----------------------------------------------------------------------===//
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Confidence.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include <iostream>
#include "rosa/config/version.h"
#include "rosa/agent/SignalStateDetector.hpp"
#include "rosa/agent/SystemStateDetector.hpp"
#include "rosa/app/Application.hpp"
#include "rosa/support/csv/CSVReader.hpp"
#include "rosa/support/csv/CSVWriter.hpp"
#include "rosa/app/AppTuple.hpp"
#include <fstream>
#include <limits>
#include <memory>
#include <streambuf>
#include "configuration.h"
#include "statehandlerutils.h"
using namespace rosa;
using namespace rosa::agent;
using namespace rosa::app;
using namespace rosa::terminal;
const std::string AppName = "CCAM";
int main(int argc, char **argv) {
LOG_INFO_STREAM << '\n'
<< library_string() << " -- " << Color::Red << AppName
<< "app" << Color::Default << '\n';
//
// Read the filepath of the config file of the observed system. The filepath
// is in the first argument passed to the application. Fuzzy functions etc.
// are described in this file.
//
if (argc < 2) {
LOG_ERROR("Specify config File!\nUsage:\n\tccam config.json");
return 1;
}
std::string ConfigPath = argv[1];
//
// Load config file and read in all parameters. Fuzzy functions etc. are
// described in this file.
//
if (!readConfigFile(ConfigPath)) {
LOG_ERROR_STREAM << "Could not read config from \"" << ConfigPath << "\"\n";
return 2;
}
//
// Create a CCAM context.
//
LOG_INFO("Creating Context");
std::unique_ptr<Application> AppCCAM = Application::create(AppName);
//
// Create following function which shall give information if the time gap
// between changed input(s) and changed output(s) shows already a malfunction
// of the system.
//
// ____________
// /
// /
// __________/
//
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 0.f, AppConfig.BrokenCounter, 1.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(1.f, 0.f)}},
0.f));
//
// Create following function which shall give information if the time gap
// between changed input(s) and changed output(s) still shows a
// well-functioning system.
//
// ____________
// \
// \
// \__________
//
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 1.f, AppConfig.BrokenCounter, 0.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(0.f, 0.f)}},
1.f));
//
// Create a AppAgent with SystemStateDetector functionality.
//
LOG_INFO("Create SystemStateDetector agent.");
AgentHandle SystemStateDetectorAgent = createSystemStateDetectorAgent(
AppCCAM, "SystemStateDetector", AppConfig.SignalConfigurations.size(),
BrokenDelayFunction, OkDelayFunction);
//
// Set policy of SystemStateDetectorAgent that it wait for all
// SignalStateDetectorAgents
//
std::set<size_t> pos;
for (size_t i = 0; i < AppConfig.SignalConfigurations.size(); ++i)
pos.insert(pos.end(), i);
AppCCAM->setExecutionPolicy(SystemStateDetectorAgent,
AppExecutionPolicy::awaitAll(pos));
//
// Create Vectors for all sensors, all signal related fuzzy functions, all
// signal state detectors, all signal state agents, and all input data files.
//
LOG_INFO("Creating sensors, SignalStateDetector functionalities and their "
"Abstractions.");
std::vector<AgentHandle> Sensors;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMismatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsStableFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsDriftingFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMatchFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMismatchFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleValidFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleInvalidFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesValidFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesInvalidFunctions;
std::vector<std::shared_ptr<
SignalStateDetector<float, float, float, HistoryPolicy::FIFO>>>
SignalStateDetectors;
std::vector<AgentHandle> SignalStateDetectorAgents;
std::vector<std::ifstream> DataFiles;
//
// Go through all signal state configurations (number of signals), and create
// functionalities for SignalStateDetector.
//
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
//
// Create application sensors.
//
Sensors.emplace_back(
AppCCAM->createSensor<float>(SignalConfiguration.Name + "_Sensor"));
//
// Create following function(s) which shall give information whether one
// sample matches another one (based on the relative distance between them).
//
// ____________
// / \
// / \
// __________/ \__________
//
//
SampleMatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 0.f,
-SignalConfiguration.InnerBound, 1.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 1.f,
SignalConfiguration.OuterBound, 0.f)},
},
0));
//
// Create following function(s) which shall give information whether one
// sample mismatches another one (based on the relative distance between
// them).
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SampleMismatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 1.f,
-SignalConfiguration.InnerBound, 0.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 0.f,
SignalConfiguration.OuterBound, 1.f)},
},
1));
//
// Create following function(s) which shall give information whether a
// signal is stable.
//
// ____________
// / \
// / \
// __________/ \__________
//
//
SignalIsStableFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBoundDrift,
-SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBoundDrift, 0.f,
-SignalConfiguration.InnerBoundDrift, 1.f)},
{{-SignalConfiguration.InnerBoundDrift,
SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBoundDrift,
SignalConfiguration.OuterBoundDrift},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBoundDrift, 1.f,
SignalConfiguration.OuterBoundDrift, 0.f)},
},
0));
//
// Create following function(s) which shall give information whether a
// signal is drifting.
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SignalIsDriftingFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBoundDrift,
-SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBoundDrift, 1.f,
-SignalConfiguration.InnerBoundDrift, 0.f)},
{{-SignalConfiguration.InnerBoundDrift,
SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBoundDrift,
SignalConfiguration.OuterBoundDrift},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBoundDrift, 0.f,
SignalConfiguration.OuterBoundDrift, 1.f)},
},
1));
//
// Create following function(s) which shall give information how many
// history samples match another sample.
//
// ____________
// /
// /
// __________/
//
NumOfSamplesMatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp));
//
// Create following function(s) which shall give information how many
// history samples mismatch another sample.
//
// ____________
// \
// \
// \__________
//
NumOfSamplesMismatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown));
//
// Create following function(s) which shall give information how good all
// samples in a state match each other.
//
// ____________
// / \
// / \
// __________/ \__________
//
//
SampleValidFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 0.f,
-SignalConfiguration.InnerBound, 1.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 1.f,
SignalConfiguration.OuterBound, 0.f)},
},
0));
//
// Create following function(s) which shall give information how good all
// samples in a state mismatch each other.
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SampleInvalidFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 1.f,
-SignalConfiguration.InnerBound, 0.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 0.f,
SignalConfiguration.OuterBound, 1.f)},
},
1));
//
// Create following function(s) which shall give information how many
// history samples match each other.
//
// ____________
// /
// /
// __________/
//
NumOfSamplesValidFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp));
//
// Create following function(s) which shall give information how many
// history samples mismatch each other.
//
// ____________
// \
// \
// \__________
//
NumOfSamplesInvalidFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown));
//
// Create SignalStateDetector functionality
//
SignalStateDetectors.emplace_back(
new SignalStateDetector<float, float, float, HistoryPolicy::FIFO>(
SignalConfiguration.Output ? SignalProperties::OUTPUT
: SignalProperties::INPUT,
std::numeric_limits<int>::max(), SampleMatchesFunctions.back(),
SampleMismatchesFunctions.back(), NumOfSamplesMatchFunctions.back(),
NumOfSamplesMismatchFunctions.back(), SampleValidFunctions.back(),
SampleInvalidFunctions.back(), NumOfSamplesValidFunctions.back(),
NumOfSamplesInvalidFunctions.back(),
SignalIsDriftingFunctions.back(), SignalIsStableFunctions.back(),
SignalConfiguration.SampleHistorySize, SignalConfiguration.DABSize,
SignalConfiguration.DABHistorySize));
//
// Create low-level application agents
//
SignalStateDetectorAgents.push_back(createSignalStateDetectorAgent(
AppCCAM, SignalConfiguration.Name, SignalStateDetectors.back()));
AppCCAM->setExecutionPolicy(
SignalStateDetectorAgents.back(),
AppExecutionPolicy::decimation(AppConfig.DownsamplingRate));
//
// Connect sensors to low-level agents.
//
LOG_INFO("Connect sensors to their corresponding low-level agents.");
AppCCAM->connectSensor(SignalStateDetectorAgents.back(), 0, Sensors.back(),
SignalConfiguration.Name + "_Sensor ->" +
SignalConfiguration.Name +
"_SignalStateDetector_Agent-Channel");
AppCCAM->connectAgents(
SystemStateDetectorAgent, SignalStateDetectors.size() - 1,
SignalStateDetectorAgents.back(),
SignalConfiguration.Name +
"_SignalStateDetector_Agent->SystemStateDetector_Agent_Channel");
}
//
// For simulation output, create a logger agent writing the output of the
// high-level agent into a CSV file.
//
LOG_INFO("Create a logger agent.");
// Create CSV writer.
std::ofstream OutputCSV(AppConfig.OutputFilePath);
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
OutputCSV << SignalConfiguration.Name + ",";
}
+//OutputCSV << "StateFirstMean,";
OutputCSV << "StateID,";
OutputCSV << "Confidence State Valid,";
OutputCSV << "Confidence State Invalid,";
OutputCSV << "Confidence Inputs Matching,";
OutputCSV << "Confidence Outputs Matching,";
OutputCSV << "Confidence Inputs Mismatching,";
OutputCSV << "Confidence Outputs Mismatching,";
OutputCSV << "State Condition,";
OutputCSV << "Confidence System Functioning,";
OutputCSV << "Confidence System Malfunctioning,";
OutputCSV << "Overall Confidence,";
OutputCSV << "\n";
// The agent writes each new input value into a CSV file and produces
// nothing.
using Input = std::pair<SystemStateTuple, bool>;
using Result = Optional<AppTuple<unit_t>>;
using Handler = std::function<Result(Input)>;
std::string Name = "Logger Agent";
AgentHandle LoggerAgent = AppCCAM->createAgent(
"Logger Agent", Handler([&OutputCSV](Input I) -> Result {
const SystemStateTuple &T = I.first;
OutputCSV << std::get<0>(
static_cast<const std::tuple<std::string> &>(T))
<< std::endl;
return Result();
}));
//
// Connect the high-level agent to the logger agent.
//
LOG_INFO("Connect the high-level agent to the logger agent.");
AppCCAM->connectAgents(LoggerAgent, 0, SystemStateDetectorAgent,
"SystemStateDetector Channel");
//
// Only log if the SystemStateDetector actually ran
//
AppCCAM->setExecutionPolicy(LoggerAgent, AppExecutionPolicy::awaitAll({0}));
//
// Do simulation.
//
LOG_INFO("Setting up and performing simulation.");
//
// Initialize application for simulation.
//
AppCCAM->initializeSimulation();
//
// Open CSV files and register them for their corresponding sensors.
//
// Make sure DataFiles will not change capacity while adding elements to it.
// Changing capacity moves elements away, which invalidates references
// captured by CSVIterator.
DataFiles.reserve(AppConfig.SignalConfigurations.size());
uint32_t i = 0;
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
DataFiles.emplace_back(SignalConfiguration.InputPath);
if (!DataFiles.at(i)) {
LOG_ERROR_STREAM << "Cannot open Input File \""
<< SignalConfiguration.InputPath << "\" for Signal \""
<< SignalConfiguration.Name << "\"" << std::endl;
return 3;
}
AppCCAM->registerSensorValues(Sensors.at(i),
csv::CSVIterator<float>(DataFiles.at(i)),
csv::CSVIterator<float>());
i++;
}
//
// Start simulation.
//
AppCCAM->simulate(AppConfig.NumberOfSimulationCycles);
return 0;
}
diff --git a/include/rosa/agent/SignalState.hpp b/include/rosa/agent/SignalState.hpp
index bb425b9..73967bd 100644
--- a/include/rosa/agent/SignalState.hpp
+++ b/include/rosa/agent/SignalState.hpp
@@ -1,511 +1,534 @@
//===-- rosa/agent/SignalState.hpp ------------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SignalState.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *signal state* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SIGNALSTATE_HPP
#define ROSA_AGENT_SIGNALSTATE_HPP
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/History.hpp"
#include "rosa/agent/State.hpp"
#include "rosa/support/math.hpp"
namespace rosa {
namespace agent {
/// Signal properties defining the properties of the signal which is monitored
/// by \c rosa::agent::SignalStateDetector and is saved in \c
/// rosa::agent::SignalStateInformation.
enum SignalProperties : uint8_t {
INPUT = 0, ///< The signal is an input signal
OUTPUT = 1 ///< The signal is an output signal
};
/// TODO: write description
template <typename CONFDATATYPE>
struct SignalStateInformation : StateInformation<CONFDATATYPE> {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence type is not to arithmetic");
/// ConfidenceOfMatchingState is the confidence how good the new sample
/// matches the state.
CONFDATATYPE ConfidenceOfMatchingState;
/// ConfidenceOfMatchingState is the confidence how bad the new sample
/// matches the state.
CONFDATATYPE ConfidenceOfMismatchingState;
/// The SignalProperty saves whether the monitored signal is an input our
/// output signal.
SignalProperties SignalProperty;
/// The SignalStateIsValid saves the number of samples which have been
/// inserted into the state after entering it.
uint32_t NumberOfInsertedSamplesAfterEntrance;
public:
SignalStateInformation(unsigned int SignalStateID,
SignalProperties _SignalProperty) {
this->StateID = SignalStateID;
this->SignalProperty = _SignalProperty;
this->StateCondition = StateConditions::UNKNOWN;
this->NumberOfInsertedSamplesAfterEntrance = 0;
+ this->FirstCnt = 0;
+ this->StateFirstMean = 0.0;
this->StateIsValid = false;
this->StateJustGotValid = false;
this->StateIsValidAfterReentrance = false;
this->ConfidenceStateIsValid = 0;
this->ConfidenceStateIsInvalid = 0;
this->ConfidenceStateIsStable = 0;
this->ConfidenceStateIsDrifting = 0;
}
SignalStateInformation() = default;
};
/// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of
/// data in that the confidence values are given, \tparam PROCDATATYPE type of
/// the relative distance and the type of data in which DABs are saved.
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE>
class SignalState : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence data type is not to arithmetic");
STATIC_ASSERT(
(std::is_arithmetic<PROCDATATYPE>::value),
"process data type (DAB and Relative Distance) is not to arithmetic");
public:
// For the convinience to write a shorter data type name
using PartFuncReference = PartialFunction<INDATATYPE, CONFDATATYPE> &;
using StepFuncReference = StepFunction<INDATATYPE, CONFDATATYPE> &;
private:
/// SignalStateInfo is a struct of SignalStateInformation that contains
/// information about the current signal state.
SignalStateInformation<CONFDATATYPE> SignalStateInfo;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMatches;
/// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMismatches;
/// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
StepFuncReference FuzzyFunctionNumOfSamplesMatches;
/// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
/// the confidence how many samples from the sampe history mismatch the new
/// sample.
StepFuncReference FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSampleValid is the fuzzy function that gives the
/// confidence how good one matches another sample in the sample
/// history. This is done to evaluate whether a state is valid.
PartFuncReference FuzzyFunctionSampleValid;
/// The FuzzyFunctionSampleInvalid is the fuzzy function that gives the
/// confidence how bad one sample matches another sample in the sample
/// history. This is done to evaluate whether a state is invalid.
PartFuncReference FuzzyFunctionSampleInvalid;
/// The FuzzyFunctionNumOfSamplesValid is the fuzzy function that gives the
/// confidence how many samples from the sample history match another sample.
/// This is done to evaluate whether a state is valid.
StepFuncReference FuzzyFunctionNumOfSamplesValid;
/// The FuzzyFunctionNumOfSamplesInvalid is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch another
/// sample. This is done to evaluate whether a state is invalid.
StepFuncReference FuzzyFunctionNumOfSamplesInvalid;
/// The FuzzyFunctionSignalIsDrifting is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting.
PartFuncReference FuzzyFunctionSignalIsDrifting;
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is stable (not drifting).
PartFuncReference FuzzyFunctionSignalIsStable;
/// SampleHistory is a history in that the last sample values are stored.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO> SampleHistory;
/// DAB is a (usually) small history of the last sample values of which a
/// average is calculated if the DAB is full.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::SRWF> DAB;
/// DABHistory is a history in that the last DABs (to be exact, the averages
/// of the last DABs) are stored.
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::LIFO> DABHistory;
/// LowestConfidenceMatchingHistory is a history in that the lowest confidence
/// for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
LowestConfidenceMatchingHistory;
/// HighestConfidenceMatchingHistory is a history in that the highest
/// confidence for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
HighestConfidenceMismatchingHistory;
/// TempConfidenceMatching is the confidence how good a sample matches the
/// state. However, the value of this variable is only needed temporarly.
CONFDATATYPE TempConfidenceMatching = 0;
/// TempConfidenceMatching is the confidence how bad a sample matches the
/// state. However, the value of this variable is only needed temporarly.
CONFDATATYPE TempConfidenceMismatching = 0;
public:
/// Creates an instance by setting all parameters
/// \param SignalStateID The Id of the SignalStateinfo \c
/// SignalStateInformation.
///
/// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
/// fuzzy function that gives the confidence how good the new sample matches
/// another sample in the sample history.
///
/// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
/// the fuzzy function that gives the confidence how bad the new sample
/// matches another sample in the sample history.
///
/// \param FuzzyFunctionNumOfSamplesMatches The
/// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
///
/// \param FuzzyFunctionNumOfSamplesMismatches The
/// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history mismatch the new
/// sample.
///
/// \param FuzzyFunctionSignalIsDrifting The FuzzyFunctionSignalIsDrifting is
/// the fuzzy function that gives the confidence how likely it is that the
/// signal (resp. the state of a signal) is drifting.
///
/// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
/// fuzzy function that gives the confidence how likely it is that the signal
/// (resp. the state of a signal) is stable (not drifting).
///
/// \param SampleHistorySize Size of the Sample History \c
/// DynamicLengthHistory . SampleHistory is a history in that the last sample
/// values are stored.
///
/// \param DABSize Size of DAB \c DynamicLengthHistory . DAB is a (usually)
/// small history of the last sample values of which a average is calculated
/// if the DAB is full.
///
/// \param DABHistorySize Size of the DABHistory \c DynamicLengthHistory .
/// DABHistory is a history in that the last DABs (to be exact, the averages
/// of the last DABs) are stored.
///
SignalState(uint32_t SignalStateID, SignalProperties SignalProperty,
uint32_t SampleHistorySize, uint32_t DABSize,
uint32_t DABHistorySize,
PartFuncReference FuzzyFunctionSampleMatches,
PartFuncReference FuzzyFunctionSampleMismatches,
StepFuncReference FuzzyFunctionNumOfSamplesMatches,
StepFuncReference FuzzyFunctionNumOfSamplesMismatches,
PartFuncReference FuzzyFunctionSampleValid,
PartFuncReference FuzzyFunctionSampleInvalid,
StepFuncReference FuzzyFunctionNumOfSamplesValid,
StepFuncReference FuzzyFunctionNumOfSamplesInvalid,
PartFuncReference FuzzyFunctionSignalIsDrifting,
PartFuncReference FuzzyFunctionSignalIsStable) noexcept
: SignalStateInfo{SignalStateID, SignalProperty},
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSampleValid(FuzzyFunctionSampleValid),
FuzzyFunctionSampleInvalid(FuzzyFunctionSampleInvalid),
FuzzyFunctionNumOfSamplesValid(FuzzyFunctionNumOfSamplesValid),
FuzzyFunctionNumOfSamplesInvalid(FuzzyFunctionNumOfSamplesInvalid),
FuzzyFunctionSignalIsDrifting(FuzzyFunctionSignalIsDrifting),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable),
SampleHistory(SampleHistorySize), DAB(DABSize),
DABHistory(DABHistorySize),
LowestConfidenceMatchingHistory(SampleHistorySize),
HighestConfidenceMismatchingHistory(SampleHistorySize) {}
/// Destroys \p this object.
~SignalState(void) = default;
void leaveSignalState(void) noexcept {
DAB.clear();
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance = 0;
SignalStateInfo.StateIsValidAfterReentrance = false;
}
SignalStateInformation<CONFDATATYPE>
insertSample(INDATATYPE Sample) noexcept {
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance++;
validateSignalState(Sample);
SampleHistory.addEntry(Sample);
+ if (SignalStateInfo.FirstCnt<10){
+ SignalStateInfo.FirstCnt += 1;
+ SignalStateInfo.StateFirstMean += Sample;
+ }
+ else if(SignalStateInfo.FirstCnt==10)
+ {
+ SignalStateInfo.StateFirstMean = SignalStateInfo.StateFirstMean/10;
+ SignalStateInfo.FirstCnt += 1;
+
+ }
+ //std::cout << SignalStateInfo.StateID <<": Cnt=" << SignalStateInfo.FirstCnt << ", Mean=" << SignalStateInfo.StateFirstMean << "\n";
+
DAB.addEntry(Sample);
if (DAB.full()) {
PROCDATATYPE AvgOfDAB = DAB.template average<PROCDATATYPE>();
DABHistory.addEntry(AvgOfDAB);
DAB.clear();
}
FuzzyFunctionNumOfSamplesMatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
FuzzyFunctionNumOfSamplesMismatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
checkSignalStability();
SignalStateInfo.ConfidenceOfMatchingState = TempConfidenceMatching;
SignalStateInfo.ConfidenceOfMismatchingState = TempConfidenceMismatching;
return SignalStateInfo;
}
/// Gives the confidence how likely the new sample matches the signal state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is matching the signal state.
CONFDATATYPE
confidenceSampleMatchesSignalState(INDATATYPE Sample) noexcept {
CONFDATATYPE ConfidenceOfBestCase = 0;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// Calculate distances to all history samples.
for (auto &HistorySample : SampleHistory) {
PROCDATATYPE RelativeDistance =
relativeDistance<INDATATYPE, PROCDATATYPE>(Sample, HistorySample);
RelativeDistanceHistory.addEntry(RelativeDistance);
}
// Sort all calculated distances so that the lowest distance (will get the
// highest confidence) is at the beginning.
RelativeDistanceHistory.sortAscending();
CONFDATATYPE ConfidenceOfWorstFittingSample = 1;
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
// TODO (future): to accelerate . don't start with 1 start with some higher
// number because a low number (i guess lower than 5) will definetely lead
// to a low confidence. except the history is not full.
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
// TODO (future): if fuzzy is defined in a way that infinity is not 0 it
// would be a problem.
ConfidenceFromRelativeDistance = 0;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfWorstFittingSample = fuzzyAND(ConfidenceOfWorstFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfBestCase =
fuzzyOR(ConfidenceOfBestCase,
fuzzyAND(ConfidenceOfWorstFittingSample,
FuzzyFunctionNumOfSamplesMatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
+ if(SignalStateInfo.FirstCnt==11){
+ if(std::abs(Sample-SignalStateInfo.StateFirstMean)>std::abs(0.1*SignalStateInfo.StateFirstMean)){
+ ConfidenceOfBestCase=0;
+ //std::cout << "Value " << Sample << "is too far away from " << SignalStateInfo.StateFirstMean << " so this state does not match mean \n";
+ }
+ }
TempConfidenceMatching = ConfidenceOfBestCase;
return ConfidenceOfBestCase;
}
/// Gives the confidence how likely the new sample mismatches the signal
/// state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is mismatching the signal state.
CONFDATATYPE
confidenceSampleMismatchesSignalState(INDATATYPE Sample) noexcept {
float ConfidenceOfWorstCase = 1;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// Calculate distances to all history samples.
for (auto &HistorySample : SampleHistory) {
RelativeDistanceHistory.addEntry(
relativeDistance<INDATATYPE, PROCDATATYPE>(Sample, HistorySample));
}
// Sort all calculated distances so that the highest distance (will get the
// lowest confidence) is at the beginning.
RelativeDistanceHistory.sortDescending();
CONFDATATYPE ConfidenceOfBestFittingSample = 0;
// TODO (future): to accelerate -> don't go until end. Confidences will only
// get higher. See comment in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)".
// Case 1 means that one (the worst fitting) sample of the history is
// compared with the new sample. Case 2 means the two worst history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
ConfidenceFromRelativeDistance = 1;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMismatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfBestFittingSample = fuzzyOR(ConfidenceOfBestFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfWorstCase =
fuzzyAND(ConfidenceOfWorstCase,
fuzzyOR(ConfidenceOfBestFittingSample,
FuzzyFunctionNumOfSamplesMismatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
+
TempConfidenceMismatching = ConfidenceOfWorstCase;
+
return ConfidenceOfWorstCase;
}
/// Gives information about the current signal state.
///
/// \return a struct SignalStateInformation that contains information about
/// the current signal state.
SignalStateInformation<CONFDATATYPE> signalStateInformation(void) noexcept {
return SignalStateInfo;
}
private:
void validateSignalState(INDATATYPE Sample) {
// TODO (future): WorstConfidenceDistance and BestConfidenceDistance could
// be set already in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)" and "CONFDATATYPE
// confidenceSampleMismatchesSignalState(INDATATYPE Sample)" when the new
// sample is compared to all history samples. This would save a lot time
// because the comparisons are done only once. However, it has to be asured
// that the these two functions are called before the insertation, and the
// FuzzyFunctions for validation and matching have to be the same!
CONFDATATYPE LowestConfidenceMatching = 1;
CONFDATATYPE HighestConfidenceMismatching = 0;
for (auto &HistorySample : SampleHistory) {
// TODO (future): think about using different fuzzy functions for
// validation and matching.
LowestConfidenceMatching = fuzzyAND(
LowestConfidenceMatching,
FuzzyFunctionSampleMatches(relativeDistance<INDATATYPE, PROCDATATYPE>(
Sample, HistorySample)));
HighestConfidenceMismatching =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionSampleMismatches(
relativeDistance<INDATATYPE, PROCDATATYPE>(
Sample, HistorySample)));
}
LowestConfidenceMatchingHistory.addEntry(LowestConfidenceMatching);
HighestConfidenceMismatchingHistory.addEntry(HighestConfidenceMismatching);
LowestConfidenceMatching = LowestConfidenceMatchingHistory.lowestEntry();
HighestConfidenceMismatching =
HighestConfidenceMismatchingHistory.highestEntry();
SignalStateInfo.ConfidenceStateIsValid =
fuzzyAND(LowestConfidenceMatching,
FuzzyFunctionNumOfSamplesValid(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
SignalStateInfo.ConfidenceStateIsInvalid =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionNumOfSamplesInvalid(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
if (SignalStateInfo.StateIsValid)
SignalStateInfo.StateJustGotValid = false;
if (SignalStateInfo.ConfidenceStateIsValid >
SignalStateInfo.ConfidenceStateIsInvalid) {
if (!SignalStateInfo.StateIsValid)
SignalStateInfo.StateJustGotValid = true;
SignalStateInfo.StateIsValid = true;
SignalStateInfo.StateIsValidAfterReentrance = true;
}
}
void checkSignalStability(void) {
if (DABHistory.numberOfEntries() >= 2) {
SignalStateInfo.ConfidenceStateIsStable = FuzzyFunctionSignalIsStable(
relativeDistance<INDATATYPE, PROCDATATYPE>(
DABHistory[DABHistory.numberOfEntries() - 1], DABHistory[0]));
SignalStateInfo.ConfidenceStateIsDrifting = FuzzyFunctionSignalIsDrifting(
relativeDistance<INDATATYPE, PROCDATATYPE>(
DABHistory[DABHistory.numberOfEntries() - 1], DABHistory[0]));
} else {
// Initializing the following variables because (at this moment) we do not
// know if the signal is stable or drifting.
SignalStateInfo.ConfidenceStateIsStable = 0;
SignalStateInfo.ConfidenceStateIsDrifting = 0;
}
if (SignalStateInfo.ConfidenceStateIsStable >
SignalStateInfo.ConfidenceStateIsDrifting) {
SignalStateInfo.StateCondition = StateConditions::STABLE;
} else if (SignalStateInfo.ConfidenceStateIsStable <
SignalStateInfo.ConfidenceStateIsDrifting) {
SignalStateInfo.StateCondition = StateConditions::DRIFTING;
+ std::cout << "DRIFTING";
} else {
SignalStateInfo.StateCondition = StateConditions::UNKNOWN;
}
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATE_HPP
diff --git a/include/rosa/agent/State.hpp b/include/rosa/agent/State.hpp
index 0a1abd4..e2d4ff1 100644
--- a/include/rosa/agent/State.hpp
+++ b/include/rosa/agent/State.hpp
@@ -1,93 +1,98 @@
//===-- rosa/agent/State.hpp ------------------------------------*- C++ -*-===//
//
// The RoSA Framework
//
// Distributed under the terms and conditions of the Boost Software License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/State.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *state* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_STATE_HPP
#define ROSA_AGENT_STATE_HPP
#include "rosa/agent/Functionality.h"
//#include "rosa/agent/FunctionAbstractions.hpp"
//#include "rosa/agent/History.hpp"
#include "rosa/support/debug.hpp"
#include <stdint.h>
//#include <vector>
namespace rosa {
namespace agent {
/// State conditions defining how the condition of a \c rosa::agent::State is
/// saved in \c rosa::agent::StateInformation.
enum StateConditions : uint8_t {
UNKNOWN = 0, ///< The state is unknown
STABLE = 1, ///< The state is stable
DRIFTING = 2, ///< The state is drifting
MALFUNCTIONING = 3 ///< Malfunction
};
template <typename CONFDATATYPE> struct StateInformation {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence type is not to arithmetic");
/// The StateID stores the ID of the state.
unsigned int StateID;
+ /// XXX
+ double StateFirstMean;
+ /// XXX
+ unsigned int FirstCnt;
+
/// The StateCondition shows the condition of a state (stable, drifting, or
/// unknown)
StateConditions StateCondition;
/// The StateIsValid shows whether a state is valid or invalid. In this
/// context, valid means that enough samples which are in close proximitry
/// have been inserted into the state.
bool StateIsValid;
/// The StateJustGotValid shows whether a state got valid (toggled from
/// invalid to valid) during the current inserted sample.
bool StateJustGotValid;
/// The StateIsValidAfterReentrance shows whether a state is valid after the
/// variable changed back to it again.
bool StateIsValidAfterReentrance;
/// TODO: describe
CONFDATATYPE ConfidenceStateIsValid;
CONFDATATYPE ConfidenceStateIsInvalid;
CONFDATATYPE ConfidenceStateIsStable;
CONFDATATYPE ConfidenceStateIsDrifting;
};
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE>
class State : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence abstraction type is not to arithmetic");
STATIC_ASSERT((std::is_arithmetic<PROCDATATYPE>::value),
"process type is not to arithmetic");
protected:
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Thu, Jul 3, 1:04 AM (1 d, 9 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
157165
Default Alt Text
(46 KB)
Attached To
Mode
R20 SoC_Rosa_repo
Attached
Detach File
Event Timeline
Log In to Comment