Page Menu
Home
Phorge
Search
Configure Global Search
Log In
Files
F340421
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Size
54 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/apps/ccam/ccam.cpp b/apps/ccam/ccam.cpp
index d9b7d97..fb9b78c 100644
--- a/apps/ccam/ccam.cpp
+++ b/apps/ccam/ccam.cpp
@@ -1,581 +1,585 @@
//===-- apps/ccam/ccam.cpp --------------------------------------*- C++ -*-===//
//
// The RoSA Framework -- Application CCAM
//
// Distributed under the terms and conditions of the Boost Software
/// License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file apps/ccam/ccam.cpp
///
/// \author Maximilian Goetzinger (maximilian.goetzinger@tuwien.ac.at)
/// \author Benedikt Tutzer (benedikt.tutzer@tuwien.ac.at)
///
/// \date 2019
///
/// \brief The application CCAM implements the case study from the paper:
/// M. Goetzinger, N. TaheriNejad, H. A. Kholerdi, A. Jantsch, E. Willegger,
/// T. Glatzl, A.M. Rahmani, T.Sauter, P. Liljeberg: Model - Free Condition
/// Monitoring with Confidence
///
/// \todo Clean up source files of this app: add standard RoSA header comment
/// for own files and do something with 3rd party files...
//===----------------------------------------------------------------------===//
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Confidence.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include <iostream>
#include "rosa/config/version.h"
#include "rosa/agent/SignalStateDetector.hpp"
#include "rosa/agent/SystemStateDetector.hpp"
#include "rosa/app/Application.hpp"
#include "rosa/support/csv/CSVReader.hpp"
#include "rosa/support/csv/CSVWriter.hpp"
#include "rosa/support/mqtt/MQTTReader.hpp"
#include "rosa/app/AppTuple.hpp"
#include <fstream>
#include <limits>
#include <memory>
#include <streambuf>
#include "configuration.h"
#include "statehandlerutils.h"
using namespace rosa;
using namespace rosa::agent;
using namespace rosa::app;
using namespace rosa::terminal;
using namespace rosa::mqtt;
const std::string AppName = "CCAM";
int main(int argc, char **argv) {
LOG_INFO_STREAM << '\n'
<< library_string() << " -- " << Color::Red << AppName
<< "app" << Color::Default << '\n';
//
// Read the filepath of the config file of the observed system. The filepath
// is in the first argument passed to the application. Fuzzy functions etc.
// are described in this file.
//
if (argc < 2) {
LOG_ERROR("Specify config File!\nUsage:\n\tccam config.json");
return 1;
}
std::string ConfigPath = argv[1];
//
// Load config file and read in all parameters. Fuzzy functions etc. are
// described in this file.
//
if (!readConfigFile(ConfigPath)) {
LOG_ERROR_STREAM << "Could not read config from \"" << ConfigPath << "\"\n";
return 2;
}
//
// Create a CCAM context.
//
LOG_INFO("Creating Context");
std::unique_ptr<Application> AppCCAM = Application::create(AppName);
//
// Create following function which shall give information if the time gap
// between changed input(s) and changed output(s) shows already a malfunction
// of the system.
//
// ____________
// /
// /
// __________/
//
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 0.f, AppConfig.BrokenCounter, 1.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(1.f, 0.f)}},
0.f));
//
// Create following function which shall give information if the time gap
// between changed input(s) and changed output(s) still shows a
// well-functioning system.
//
// ____________
// \
// \
// \__________
//
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 1.f, AppConfig.BrokenCounter, 0.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(0.f, 0.f)}},
1.f));
//
// Create a AppAgent with SystemStateDetector functionality.
//
LOG_INFO("Create SystemStateDetector agent.");
AgentHandle SystemStateDetectorAgent = createSystemStateDetectorAgent(
AppCCAM, "SystemStateDetector", AppConfig.SignalConfigurations.size(),
BrokenDelayFunction, OkDelayFunction);
//
// Set policy of SystemStateDetectorAgent that it wait for all
// SignalStateDetectorAgents
//
std::set<size_t> pos;
for (size_t i = 0; i < AppConfig.SignalConfigurations.size(); ++i)
pos.insert(pos.end(), i);
AppCCAM->setExecutionPolicy(SystemStateDetectorAgent,
AppExecutionPolicy::awaitAll(pos));
//
// Create Vectors for all sensors, all signal related fuzzy functions, all
// signal state detectors, all signal state agents, and all input data files.
//
LOG_INFO("Creating sensors, SignalStateDetector functionalities and their "
"Abstractions.");
std::vector<AgentHandle> Sensors;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMismatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsStableFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsDriftingFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMatchFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMismatchFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleValidFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleInvalidFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesValidFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesInvalidFunctions;
std::vector<std::shared_ptr<
SignalStateDetector<float, float, float, HistoryPolicy::FIFO>>>
SignalStateDetectors;
std::vector<AgentHandle> SignalStateDetectorAgents;
std::vector<std::ifstream> DataFiles;
//
// Go through all signal state configurations (number of signals), and create
// functionalities for SignalStateDetector.
//
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
//
// Create application sensors.
//
Sensors.emplace_back(
AppCCAM->createSensor<float>(SignalConfiguration.Name + "_Sensor"));
//
// Create following function(s) which shall give information whether one
// sample matches another one (based on the relative distance between them).
//
// ____________
// / \
// / \
// __________/ \__________
//
//
SampleMatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 0.f,
-SignalConfiguration.InnerBound, 1.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 1.f,
SignalConfiguration.OuterBound, 0.f)},
},
0));
//
// Create following function(s) which shall give information whether one
// sample mismatches another one (based on the relative distance between
// them).
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SampleMismatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 1.f,
-SignalConfiguration.InnerBound, 0.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 0.f,
SignalConfiguration.OuterBound, 1.f)},
},
1));
//
// Create following function(s) which shall give information whether a
// signal is stable.
//
// ____________
// / \
// / \
// __________/ \__________
//
//
SignalIsStableFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBoundDrift,
-SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBoundDrift, 0.f,
-SignalConfiguration.InnerBoundDrift, 1.f)},
{{-SignalConfiguration.InnerBoundDrift,
SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBoundDrift,
SignalConfiguration.OuterBoundDrift},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBoundDrift, 1.f,
SignalConfiguration.OuterBoundDrift, 0.f)},
},
0));
//
// Create following function(s) which shall give information whether a
// signal is drifting.
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SignalIsDriftingFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBoundDrift,
-SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBoundDrift, 1.f,
-SignalConfiguration.InnerBoundDrift, 0.f)},
{{-SignalConfiguration.InnerBoundDrift,
SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBoundDrift,
SignalConfiguration.OuterBoundDrift},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBoundDrift, 0.f,
SignalConfiguration.OuterBoundDrift, 1.f)},
},
1));
//
// Create following function(s) which shall give information how many
// history samples match another sample.
//
// ____________
// /
// /
// __________/
//
NumOfSamplesMatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp));
//
// Create following function(s) which shall give information how many
// history samples mismatch another sample.
//
// ____________
// \
// \
// \__________
//
NumOfSamplesMismatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown));
//
// Create following function(s) which shall give information how good all
// samples in a state match each other.
//
// ____________
// / \
// / \
// __________/ \__________
//
//
SampleValidFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 0.f,
-SignalConfiguration.InnerBound, 1.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 1.f,
SignalConfiguration.OuterBound, 0.f)},
},
0));
//
// Create following function(s) which shall give information how good all
// samples in a state mismatch each other.
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SampleInvalidFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 1.f,
-SignalConfiguration.InnerBound, 0.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 0.f,
SignalConfiguration.OuterBound, 1.f)},
},
1));
//
// Create following function(s) which shall give information how many
// history samples match each other.
//
// ____________
// /
// /
// __________/
//
NumOfSamplesValidFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp));
//
// Create following function(s) which shall give information how many
// history samples mismatch each other.
//
// ____________
// \
// \
// \__________
//
NumOfSamplesInvalidFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown));
//
// Create SignalStateDetector functionality
//
SignalStateDetectors.emplace_back(
new SignalStateDetector<float, float, float, HistoryPolicy::FIFO>(
SignalConfiguration.Output ? SignalProperties::OUTPUT
: SignalProperties::INPUT,
std::numeric_limits<int>::max(), SampleMatchesFunctions.back(),
SampleMismatchesFunctions.back(), NumOfSamplesMatchFunctions.back(),
NumOfSamplesMismatchFunctions.back(), SampleValidFunctions.back(),
SampleInvalidFunctions.back(), NumOfSamplesValidFunctions.back(),
NumOfSamplesInvalidFunctions.back(),
SignalIsDriftingFunctions.back(), SignalIsStableFunctions.back(),
SignalConfiguration.SampleHistorySize, SignalConfiguration.DABSize,
SignalConfiguration.DABHistorySize));
//
// Create low-level application agents
//
SignalStateDetectorAgents.push_back(createSignalStateDetectorAgent(
AppCCAM, SignalConfiguration.Name, SignalStateDetectors.back()));
AppCCAM->setExecutionPolicy(
SignalStateDetectorAgents.back(),
AppExecutionPolicy::decimation(AppConfig.DownsamplingRate));
//
// Connect sensors to low-level agents.
//
LOG_INFO("Connect sensors to their corresponding low-level agents.");
AppCCAM->connectSensor(SignalStateDetectorAgents.back(), 0, Sensors.back(),
SignalConfiguration.Name + "_Sensor ->" +
SignalConfiguration.Name +
"_SignalStateDetector_Agent-Channel");
AppCCAM->connectAgents(
SystemStateDetectorAgent, SignalStateDetectors.size() - 1,
SignalStateDetectorAgents.back(),
SignalConfiguration.Name +
"_SignalStateDetector_Agent->SystemStateDetector_Agent_Channel");
}
//
// For simulation output, create a logger agent writing the output of the
// high-level agent into a CSV file.
//
LOG_INFO("Create a logger agent.");
// Create CSV writer.
std::ofstream OutputCSV(AppConfig.OutputFilePath);
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
OutputCSV << SignalConfiguration.Name + ",";
}
OutputCSV << "StateID,";
OutputCSV << "Confidence State Valid,";
OutputCSV << "Confidence State Invalid,";
OutputCSV << "Confidence Inputs Matching,";
OutputCSV << "Confidence Inputs Mismatching,";
OutputCSV << "Confidence Outputs Matching,";
OutputCSV << "Confidence Outputs Mismatching,";
OutputCSV << "Confidence State Stable,";
OutputCSV << "Confidence State Drifting,";
OutputCSV << "State Condition,";
OutputCSV << "Confidence System Functioning,";
OutputCSV << "Confidence System Malfunctioning,";
OutputCSV << "Overall Confidence,";
//=== Log Signal State Detector Outputs ===//
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
OutputCSV << SignalConfiguration.Name + " StateID,";
OutputCSV << SignalConfiguration.Name + " Confidence Matching,";
OutputCSV << SignalConfiguration.Name + " Confidence Mismatching,";
OutputCSV << SignalConfiguration.Name + " Confidence State Valid,";
OutputCSV << SignalConfiguration.Name + " Confidence State Invalid,";
OutputCSV << SignalConfiguration.Name + " Confidence State Stable,";
OutputCSV << SignalConfiguration.Name + " Confidence State Drifting,";
OutputCSV << SignalConfiguration.Name + " StateJustGotValid,";
OutputCSV << SignalConfiguration.Name + " StateValidAfterReentrance,";
+
+ OutputCSV << SignalConfiguration.Name + " StateHasChanged,";
+ OutputCSV << SignalConfiguration.Name + " StateWasDeleted,";
+ OutputCSV << SignalConfiguration.Name + " StateWasCreated,";
}
//===//
OutputCSV << "\n";
// The agent writes each new input value into a CSV file and produces
// nothing.
using Input = std::pair<SystemStateTuple, bool>;
using Result = Optional<AppTuple<unit_t>>;
using Handler = std::function<Result(Input)>;
std::string Name = "Logger Agent";
AgentHandle LoggerAgent = AppCCAM->createAgent(
"Logger Agent", Handler([&OutputCSV](Input I) -> Result {
const SystemStateTuple &T = I.first;
OutputCSV << std::get<0>(
static_cast<const std::tuple<std::string> &>(T))
<< std::endl;
return Result();
}));
//
// Connect the high-level agent to the logger agent.
//
LOG_INFO("Connect the high-level agent to the logger agent.");
AppCCAM->connectAgents(LoggerAgent, 0, SystemStateDetectorAgent,
"SystemStateDetector Channel");
//
// Only log if the SystemStateDetector actually ran
//
AppCCAM->setExecutionPolicy(LoggerAgent, AppExecutionPolicy::awaitAll({0}));
//
// Do simulation.
//
LOG_INFO("Setting up and performing simulation.");
//
// Initialize application for simulation.
//
AppCCAM->initializeSimulation();
//
// Open CSV files and register them for their corresponding sensors.
//
// Make sure DataFiles will not change capacity while adding elements to it.
// Changing capacity moves elements away, which invalidates references
// captured by CSVIterator.
DataFiles.reserve(AppConfig.SignalConfigurations.size());
uint32_t i = 0;
bool hasMQTT = false;
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
switch (SignalConfiguration.DataInterfaceType) {
case DataInterfaceTypes::CSV:
DataFiles.emplace_back(SignalConfiguration.InputPath);
if (!DataFiles.at(i)) {
LOG_ERROR_STREAM << "Cannot open Input File \""
<< SignalConfiguration.InputPath << "\" for Signal \""
<< SignalConfiguration.Name << "\"" << std::endl;
return 3;
}
AppCCAM->registerSensorValues(Sensors.at(i),
csv::CSVIterator<float>(DataFiles.at(i)),
csv::CSVIterator<float>());
LOG_INFO_STREAM << "Sensor " << SignalConfiguration.Name
<< " is fed by csv file " << SignalConfiguration.InputPath
<< std::endl;
break;
case DataInterfaceTypes::MQTT: {
hasMQTT = true;
auto it = MQTTIterator<float>(SignalConfiguration.MQTTTopic);
AppCCAM->registerSensorValues(Sensors.at(i), std::move(it),
MQTTIterator<float>());
LOG_INFO_STREAM << "Sensor " << SignalConfiguration.Name
<< " is fed by MQTT topic "
<< SignalConfiguration.MQTTTopic << std::endl;
break;
}
default:
LOG_ERROR_STREAM << "No data source for " << SignalConfiguration.Name
<< std::endl;
break;
}
i++;
}
//
// Start simulation.
//
auto &log = LOG_WARNING_STREAM;
log << "Simulation starting.";
if (hasMQTT) {
log << " Publishing MQTT messages may start.";
}
log << std::endl;
AppCCAM->simulate(AppConfig.NumberOfSimulationCycles);
return 0;
}
diff --git a/apps/ccam/statehandlerutils.h b/apps/ccam/statehandlerutils.h
index 2c9d38f..d5e3501 100644
--- a/apps/ccam/statehandlerutils.h
+++ b/apps/ccam/statehandlerutils.h
@@ -1,290 +1,307 @@
#ifndef STATEHANDLERUTILS_H
#define STATEHANDLERUTILS_H
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Confidence.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include <functional>
#include <iostream>
#include <tuple>
#include <vector>
#include "rosa/config/version.h"
#include "rosa/agent/SignalStateDetector.hpp"
#include "rosa/agent/SystemStateDetector.hpp"
#include "rosa/app/Application.hpp"
#include "rosa/support/csv/CSVReader.hpp"
#include "rosa/support/csv/CSVWriter.hpp"
#include <fstream>
#include <limits>
#include <memory>
#include <streambuf>
using namespace rosa;
using namespace rosa::agent;
using namespace rosa::app;
using namespace rosa::terminal;
// For the convinience to write a shorter data type name
using SignalStateTuple =
AppTuple<float, uint32_t, uint8_t, float, float, float, float, float, float,
uint8_t, uint32_t, uint8_t>;
AgentHandle createSignalStateDetectorAgent(
std::unique_ptr<Application> &C, const std::string &Name,
std::shared_ptr<
SignalStateDetector<float, float, float, HistoryPolicy::FIFO>>
SigSD) {
using Input = std::pair<AppTuple<float>, bool>;
using Result = Optional<SignalStateTuple>;
using Handler = std::function<Result(Input)>;
return C->createAgent(
Name, Handler([&, Name, SigSD](Input I) -> Result {
LOG_INFO_STREAM << "\n******\n"
<< Name << " " << (I.second ? "<New>" : "<Old>")
<< " value: "
<< std::get<0>(
static_cast<std::tuple<float> &>(I.first))
<< "\n******\n";
auto StateInfo = SigSD->detectSignalState(
std::get<0>(static_cast<std::tuple<float> &>(I.first)));
if (I.second) {
SignalStateTuple Res = {
std::get<0>(static_cast<std::tuple<float> &>(I.first)),
StateInfo.StateID,
StateInfo.SignalProperty,
StateInfo.ConfidenceOfMatchingState,
StateInfo.ConfidenceOfMismatchingState,
StateInfo.ConfidenceStateIsValid,
StateInfo.ConfidenceStateIsInvalid,
StateInfo.ConfidenceStateIsStable,
StateInfo.ConfidenceStateIsDrifting,
StateInfo.StateCondition,
StateInfo.NumberOfInsertedSamplesAfterEntrance,
static_cast<uint8_t>(
+ (SigSD->stateHasChanged() ? 32 : 0) +
+ (SigSD->stateWasDeleted() ? 16 : 0) +
+ (SigSD->stateWasCreated() ? 8 : 0) +
(StateInfo.StateIsValid ? 4 : 0) +
(StateInfo.StateJustGotValid ? 2 : 0) +
(StateInfo.StateIsValidAfterReentrance ? 1 : 0))};
return Result(Res);
}
return Result();
}));
}
// System State
using SystemStateTuple = AppTuple<std::string>;
template <std::size_t size, typename ret, typename functype, typename... A>
struct Handler_helper;
template <typename B, typename func, typename A, typename... As>
struct function_helper {
static_assert(std::conjunction_v<std::is_same<A, As>...>,
"All types need to be identical");
static B function(A valA, As... valAs) {
std::vector<A> ar({valA, valAs...});
return func()(ar);
}
};
template <typename ret, typename typeA, typename functype, typename... B>
struct Handler_helper<0, ret, functype, typeA, B...> {
using handler = function_helper<ret, functype, B...>;
};
template <std::size_t size, typename ret, typename typeA, typename functype,
typename... B>
struct Handler_helper<size, ret, functype, typeA, B...> {
using handler =
typename Handler_helper<size - 1, ret, functype, typeA,
std::pair<typeA, bool>, B...>::handler;
};
template <std::size_t size, typename ret, typename functype, typename typeA>
using Handler = typename Handler_helper<size, ret, functype, typeA>::handler;
// TODO: Change it from global to local variable if possible
std::shared_ptr<
SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO>>
SysSD;
template <typename ret, typename A> struct function {
ret operator()(A a) {
std::vector<SignalStateInformation<float>> SignalStateInfos;
+ std::vector<uint8_t> SignalStateDecisions;
std::stringstream OutString;
for (auto _SignalStateTuple : a) {
// convert tuple to info struct out.push_back({});
OutString << std::get<0>(_SignalStateTuple.first) << ",";
SignalStateInformation<float> Info;
Info.StateID = std::get<1>(_SignalStateTuple.first);
Info.SignalProperty =
static_cast<SignalProperties>(std::get<2>(_SignalStateTuple.first));
Info.ConfidenceOfMatchingState = std::get<3>(_SignalStateTuple.first);
Info.ConfidenceOfMismatchingState = std::get<4>(_SignalStateTuple.first);
Info.ConfidenceStateIsValid = std::get<5>(_SignalStateTuple.first);
Info.ConfidenceStateIsInvalid = std::get<6>(_SignalStateTuple.first);
Info.ConfidenceStateIsStable = std::get<7>(_SignalStateTuple.first);
Info.ConfidenceStateIsDrifting = std::get<8>(_SignalStateTuple.first);
Info.StateCondition =
static_cast<StateConditions>(std::get<9>(_SignalStateTuple.first));
Info.NumberOfInsertedSamplesAfterEntrance =
std::get<10>(_SignalStateTuple.first);
Info.StateIsValid = (std::get<11>(_SignalStateTuple.first) & 4) > 0;
Info.StateJustGotValid = (std::get<11>(_SignalStateTuple.first) & 2) > 0;
Info.StateIsValidAfterReentrance =
(std::get<11>(_SignalStateTuple.first) & 1) > 0;
SignalStateInfos.push_back(Info);
+
+ uint8_t decisions = std::get<11>(_SignalStateTuple.first);
+ SignalStateDecisions.push_back(decisions);
}
SystemStateInformation<float> SystemStateInfo =
SysSD->detectSystemState(SignalStateInfos);
OutString << SystemStateInfo.StateID << ",";
OutString << SystemStateInfo.ConfidenceStateIsValid << ",";
OutString << SystemStateInfo.ConfidenceStateIsInvalid << ",";
OutString << SystemStateInfo.ConfidenceOfInputsMatchingState << ",";
OutString << SystemStateInfo.ConfidenceOfInputsMismatchingState << ",";
OutString << SystemStateInfo.ConfidenceOfOutputsMatchingState << ",";
OutString << SystemStateInfo.ConfidenceOfOutputsMismatchingState << ",";
OutString << SystemStateInfo.ConfidenceStateIsStable << ",";
OutString << SystemStateInfo.ConfidenceStateIsDrifting << ",";
OutString << SystemStateInfo.StateCondition << ",";
OutString << SystemStateInfo.ConfidenceSystemIsFunctioning << ",";
OutString << SystemStateInfo.ConfidenceSystemIsMalfunctioning << ",";
OutString << SystemStateInfo.ConfidenceOfAllDecisions << ",";
//=== Log Signal State Detector Outputs ===//
+ int i = 0;
for (auto SSI : SignalStateInfos) {
OutString << SSI.StateID << ",";
OutString << SSI.ConfidenceOfMatchingState << ",";
OutString << SSI.ConfidenceOfMismatchingState << ",";
OutString << SSI.ConfidenceStateIsValid << ",";
OutString << SSI.ConfidenceStateIsInvalid << ",";
OutString << SSI.ConfidenceStateIsStable << ",";
OutString << SSI.ConfidenceStateIsDrifting << ",";
OutString << SSI.StateJustGotValid << ",";
OutString << SSI.StateIsValidAfterReentrance << ",";
+
+ uint8_t decisions = SignalStateDecisions[i];
+ OutString << ((decisions & 32) > 0) << ","; //StateHasChanged
+ OutString << ((decisions & 16) > 0) << ","; //StateWasDeleted
+ OutString << ((decisions & 8) > 0) << ","; //StateWasCreated
+ //OutString << ((decisions & 4) > 0) << ","; //StateHasChanged
+ //OutString << ((decisions & 2) > 0) << ","; //StateWasDeleted
+ //OutString << ((decisions & 1) > 0) << ","; //StateWasCreated
+ i++;
}
return ret(std::make_tuple<std::string>(OutString.str()));
}
};
using arr = std::vector<std::pair<SignalStateTuple, bool>>;
template <size_t NumOfSlaves>
AgentHandle createSystemStateDetectorAgent(
std::unique_ptr<Application> &C, const std::string &Name,
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction,
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction) {
LOG_TRACE("Creating fixed SystemStateDetectorAgent");
using Input = SignalStateTuple;
using Result = Optional<SystemStateTuple>;
std::shared_ptr<
SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO>>
_SysSD(
new SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO>(
std::numeric_limits<uint32_t>::max(), NumOfSlaves,
BrokenDelayFunction, OkDelayFunction));
SysSD = _SysSD;
auto HandlerFunction =
Handler<NumOfSlaves, Result, function<Optional<SystemStateTuple>, arr>,
Input>::function;
return C->createAgent(Name, std::function(HandlerFunction));
}
AgentHandle createSystemStateDetectorAgent(
std::unique_ptr<Application> &C, const std::string &Name,
size_t NumOfSlaves,
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction,
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction) {
LOG_TRACE("Creating dynamic SystemStateDetectorAgent");
switch (NumOfSlaves) {
// clang-format off
case 2: return createSystemStateDetectorAgent< 2>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 3: return createSystemStateDetectorAgent< 3>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 4: return createSystemStateDetectorAgent< 4>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 5: return createSystemStateDetectorAgent< 5>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 6: return createSystemStateDetectorAgent< 6>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 7: return createSystemStateDetectorAgent< 7>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 8: return createSystemStateDetectorAgent< 8>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 9: return createSystemStateDetectorAgent< 9>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 10: return createSystemStateDetectorAgent<10>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 11: return createSystemStateDetectorAgent<11>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 12: return createSystemStateDetectorAgent<12>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 13: return createSystemStateDetectorAgent<13>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 14: return createSystemStateDetectorAgent<14>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 15: return createSystemStateDetectorAgent<15>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 16: return createSystemStateDetectorAgent<16>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 17: return createSystemStateDetectorAgent<17>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 18: return createSystemStateDetectorAgent<18>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 19: return createSystemStateDetectorAgent<19>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 20: return createSystemStateDetectorAgent<20>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 21: return createSystemStateDetectorAgent<21>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 22: return createSystemStateDetectorAgent<22>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 23: return createSystemStateDetectorAgent<23>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 24: return createSystemStateDetectorAgent<24>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 25: return createSystemStateDetectorAgent<25>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 1:
default: return createSystemStateDetectorAgent<1>(C, Name, BrokenDelayFunction, OkDelayFunction);
// clang-format on
}
}
// template <typename T, typename>
// AgentHandle createMQTTSensor(std::string MQTTTopic) {
// using Input = void;
// using Result = Optional<T>;
// using Handler = std::function<Result(Input)>;
// return C->createAgent(
// Name, Handler([&, Name, SigSD](Input I) -> Result {
// LOG_INFO_STREAM << "\n******\n"
// << Name << " " << (I.second ? "<New>" : "<Old>")
// << " value: "
// << std::get<0>(
// static_cast<std::tuple<float> &>(I.first))
// << "\n******\n";
// auto StateInfo = SigSD->detectSignalState(
// std::get<0>(static_cast<std::tuple<float> &>(I.first)));
// if (I.second) {
// SignalStateTuple Res = {
// std::get<0>(static_cast<std::tuple<float> &>(I.first)),
// StateInfo.StateID,
// StateInfo.SignalProperty,
// StateInfo.ConfidenceOfMatchingState,
// StateInfo.ConfidenceOfMismatchingState,
// StateInfo.ConfidenceStateIsValid,
// StateInfo.ConfidenceStateIsInvalid,
// StateInfo.ConfidenceStateIsStable,
// StateInfo.ConfidenceStateIsDrifting,
// StateInfo.StateCondition,
// StateInfo.NumberOfInsertedSamplesAfterEntrance,
// static_cast<uint8_t>(
// (StateInfo.StateIsValid ? 4 : 0) +
// (StateInfo.StateJustGotValid ? 2 : 0) +
// (StateInfo.StateIsValidAfterReentrance ? 1 : 0))};
// return Result(Res);
// }
// return Result();
// }));
// }
#endif // STATEHANDLERUTILS_H
diff --git a/include/rosa/agent/SignalStateDetector.hpp b/include/rosa/agent/SignalStateDetector.hpp
index 8a7d3c1..3ac8c07 100644
--- a/include/rosa/agent/SignalStateDetector.hpp
+++ b/include/rosa/agent/SignalStateDetector.hpp
@@ -1,332 +1,351 @@
//===-- rosa/agent/SignalStateDetector.hpp ----------------------*- C++ -*-===//
//
// The RoSA Framework
//
// Distributed under the terms and conditions of the Boost Software License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SignalStateDetector.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *signal state detector* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
#define ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
#include "rosa/agent/Functionality.h"
#include "rosa/agent/SignalState.hpp"
#include "rosa/agent/StateDetector.hpp"
#include <vector>
namespace rosa {
namespace agent {
/// Implements \c rosa::agent::SignalStateDetector as a functionality that
/// detects signal states given on input samples.
///
/// \note This implementation is supposed to be used for samples of an
/// arithmetic type.
///
/// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of
/// data in that the confidence values are given, \tparam PROCDATATYPE type of
/// the relative distance and the type of data in which DABs are saved.
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE,
HistoryPolicy HP>
class SignalStateDetector
: public StateDetector<INDATATYPE, CONFDATATYPE, PROCDATATYPE, HP> {
using StateDetector =
StateDetector<INDATATYPE, CONFDATATYPE, PROCDATATYPE, HP>;
using PartFuncPointer = typename StateDetector::PartFuncPointer;
using StepFuncPointer = typename StateDetector::StepFuncPointer;
private:
// For the convinience to write a shorter data type name
using SignalStatePtr =
std::shared_ptr<SignalState<INDATATYPE, CONFDATATYPE, PROCDATATYPE>>;
/// The SignalProperty saves whether the monitored signal is an input our
/// output signal.
SignalProperties SignalProperty;
/// The CurrentSignalState is a pointer to the (saved) signal state in which
/// the actual variable (signal) of the observed system is.
SignalStatePtr CurrentSignalState;
/// The DetectedSignalStates is a history in that all detected signal states
/// are saved.
DynamicLengthHistory<SignalStatePtr, HP> DetectedSignalStates;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history. This is done to evaluate whether one sample belongs to an
/// existing state.
PartFuncPointer FuzzyFunctionSampleMatches;
/// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history. This is done to evaluate whether one sample does not belong to an
/// existing state.
PartFuncPointer FuzzyFunctionSampleMismatches;
/// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sample history match the new sample.
/// This is done to evaluate whether one sample belongs to an existing state.
StepFuncPointer FuzzyFunctionNumOfSamplesMatches;
/// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch the new
/// sample. This is done to evaluate whether one sample does not belong to an
/// existing state.
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSampleValid is the fuzzy function that gives the
/// confidence how good one matches another sample in the sample
/// history. This is done to evaluate whether a state is valid.
PartFuncPointer FuzzyFunctionSampleValid;
/// The FuzzyFunctionSampleInvalid is the fuzzy function that gives the
/// confidence how bad one sample matches another sample in the sample
/// history. This is done to evaluate whether a state is invalid.
PartFuncPointer FuzzyFunctionSampleInvalid;
/// The FuzzyFunctionNumOfSamplesValid is the fuzzy function that gives the
/// confidence how many samples from the sample history match another sample.
/// This is done to evaluate whether a state is valid.
StepFuncPointer FuzzyFunctionNumOfSamplesValid;
/// The FuzzyFunctionNumOfSamplesInvalid is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch another
/// sample. This is done to evaluate whether a state is invalid.
StepFuncPointer FuzzyFunctionNumOfSamplesInvalid;
/// The FuzzyFunctionSignalIsDrifting is the fuzzy function that gives the
/// confidence how likely it is that the signal is drifting.
PartFuncPointer FuzzyFunctionSignalIsDrifting;
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal is stable (not drifting).
PartFuncPointer FuzzyFunctionSignalIsStable;
/// TODO: describe
std::shared_ptr<PartialFunction<uint32_t, float>>
FuzzyFunctionSignalConditionLookBack;
/// TODO: describe
std::shared_ptr<PartialFunction<uint32_t, float>>
FuzzyFunctionSignalConditionHistoryDesicion;
/// TODO: describe
uint32_t DriftLookbackRange;
/// SampleHistorySize is the (maximum) size of the sample history.
uint32_t SampleHistorySize;
/// DABSize the size of a DAB (Discrete Average Block).
uint32_t DABSize;
/// DABHistorySize is the (maximum) size of the DAB history.
uint32_t DABHistorySize;
public:
/// Creates an instance by setting all parameters
/// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
/// fuzzy function that gives the confidence how good the new sample matches
/// another sample in the sample history.
///
/// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
/// the fuzzy function that gives the confidence how bad the new sample
/// matches another sample in the sample history.
///
/// \param FuzzyFunctionNumOfSamplesMatches The
/// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
///
/// \param FuzzyFunctionNumOfSamplesMismatches The
/// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history mismatch the new
/// sample.
///
/// \param FuzzyFunctionSignalIsDrifting The FuzzyFunctionSignalIsDrifting is
/// the fuzzy function that gives the confidence how likely it is that the
/// signal (resp. the state of a signal) is drifting.
///
/// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
/// fuzzy function that gives the confidence how likely it is that the signal
/// (resp. the state of a signal) is stable (not drifting).
///
/// \param SampleHistorySize Sets the History size which will be used by \c
/// SignalState.
///
/// \param DABSize Sets the DAB size which will be used by \c SignalState.
///
/// \param DABHistorySize Sets the size which will be used by \c SignalState.
///
SignalStateDetector(SignalProperties SignalProperty,
uint32_t MaximumNumberOfSignalStates,
PartFuncPointer FuzzyFunctionSampleMatches,
PartFuncPointer FuzzyFunctionSampleMismatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches,
PartFuncPointer FuzzyFunctionSampleValid,
PartFuncPointer FuzzyFunctionSampleInvalid,
StepFuncPointer FuzzyFunctionNumOfSamplesValid,
StepFuncPointer FuzzyFunctionNumOfSamplesInvalid,
PartFuncPointer FuzzyFunctionSignalIsDrifting,
PartFuncPointer FuzzyFunctionSignalIsStable,
// std::shared_ptr<PartialFunction<uint32_t, float>>
// FuzzyFunctionSignalConditionLookBack,
// std::shared_ptr<PartialFunction<uint32_t, float>>
// FuzzyFunctionSignalConditionHistoryDesicion,
// uint32_t DriftLookbackRange,
uint32_t SampleHistorySize, uint32_t DABSize,
uint32_t DABHistorySize) noexcept
: SignalProperty(SignalProperty), CurrentSignalState(nullptr),
DetectedSignalStates(MaximumNumberOfSignalStates),
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSampleValid(FuzzyFunctionSampleValid),
FuzzyFunctionSampleInvalid(FuzzyFunctionSampleInvalid),
FuzzyFunctionNumOfSamplesValid(FuzzyFunctionNumOfSamplesValid),
FuzzyFunctionNumOfSamplesInvalid(FuzzyFunctionNumOfSamplesInvalid),
FuzzyFunctionSignalIsDrifting(FuzzyFunctionSignalIsDrifting),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable),
// FuzzyFunctionSignalConditionLookBack(
// FuzzyFunctionSignalConditionLookBack),
// FuzzyFunctionSignalConditionHistoryDesicion(
// FuzzyFunctionSignalConditionHistoryDesicion),
// DriftLookbackRange(DriftLookbackRange),
SampleHistorySize(SampleHistorySize), DABSize(DABSize),
DABHistorySize(DABHistorySize) {
this->NextStateID = 1;
this->StateHasChanged = false;
+ this->StateWasDeleted = false;
+ this->StateWasCreated = false;
}
/// Destroys \p this object.
~SignalStateDetector(void) = default;
/// Detects the signal state to which the new sample belongs or create a new
/// signal state if the new sample does not match to any of the saved states.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the information of the current signal state (signal state ID and
/// other parameters).
// TODO (future): change this function to an operator()-function
SignalStateInformation<CONFDATATYPE>
detectSignalState(INDATATYPE Sample) noexcept {
+ this->StateHasChanged = false;
+ this->StateWasDeleted = false;
+ this->StateWasCreated = false;
+
if (!CurrentSignalState) {
ASSERT(DetectedSignalStates.empty());
SignalStatePtr S = createNewSignalState();
CurrentSignalState = S;
} else {
// TODO (future): maybe there is a better way than a relative distance
// comparison. Maybe somehow a mix of relative and absolute?
CONFDATATYPE ConfidenceSampleMatchesSignalState =
CurrentSignalState->confidenceSampleMatchesSignalState(Sample);
CONFDATATYPE ConfidenceSampleMismatchesSignalState =
CurrentSignalState->confidenceSampleMismatchesSignalState(Sample);
this->StateHasChanged = ConfidenceSampleMatchesSignalState <=
ConfidenceSampleMismatchesSignalState;
if (this->StateHasChanged) {
+ this->StateWasDeleted = !CurrentSignalState->signalStateInformation().StateIsValid;
if (CurrentSignalState->signalStateInformation().StateIsValid)
CurrentSignalState->leaveSignalState();
else
DetectedSignalStates.deleteEntry(CurrentSignalState);
// TODO (future): additionally save averages to enable fast iteration
// through recorded signl state history (maybe sort vector based on
// these average values)
CurrentSignalState = nullptr;
for (auto &SavedSignalState : DetectedSignalStates) {
ConfidenceSampleMatchesSignalState =
SavedSignalState->confidenceSampleMatchesSignalState(Sample);
ConfidenceSampleMismatchesSignalState =
SavedSignalState->confidenceSampleMismatchesSignalState(Sample);
if (ConfidenceSampleMatchesSignalState >
ConfidenceSampleMismatchesSignalState) {
// TODO (future): maybe it would be better to compare
// ConfidenceSampleMatchesSignalState of all signal states in the
// vector in order to find the best matching signal state.
CurrentSignalState = SavedSignalState;
break;
}
}
if (!CurrentSignalState) {
SignalStatePtr S = createNewSignalState();
CurrentSignalState = S;
}
}
}
SignalStateInformation<CONFDATATYPE> SignalStateInfo =
CurrentSignalState->insertSample(Sample);
if (SignalStateInfo.StateJustGotValid) {
this->NextStateID++;
}
return SignalStateInfo;
}
/// Gives information about the current signal state.
///
/// \return a struct SignalStateInformation that contains information about
/// the current signal state or NULL if no current signal state exists.
SignalStateInformation<CONFDATATYPE>
currentSignalStateInformation(void) noexcept {
if (CurrentSignalState) {
return CurrentSignalState->signalStateInformation();
} else {
return NULL;
}
}
/// Gives information whether a signal state change has happened or not.
///
/// \return true if a signal state change has happened, and false if not.
bool stateHasChanged(void) noexcept { return this->StateHasChanged; }
+ /// Gives information whether a signal state has been created or not.
+ ///
+ /// \return true if a signal state has been deleted, and false if not.
+ bool stateWasDeleted(void) noexcept { return this->StateWasDeleted; }
+
+ /// Gives information whether a signal state has been created or not.
+ ///
+ /// \return true if a signal state has been created, and false if not.
+ bool stateWasCreated(void) noexcept { return this->StateWasCreated; }
+
+
private:
/// Creates a new signal state and adds it to the signal state vector in which
/// all known states are saved.
///
/// \return a pointer to the newly created signal state or NULL if no state
/// could be created.
SignalStatePtr createNewSignalState(void) noexcept {
SignalStatePtr S(new SignalState<INDATATYPE, CONFDATATYPE, PROCDATATYPE>(
this->NextStateID, SignalProperty, SampleHistorySize, DABSize,
DABHistorySize, *FuzzyFunctionSampleMatches,
*FuzzyFunctionSampleMismatches, *FuzzyFunctionNumOfSamplesMatches,
*FuzzyFunctionNumOfSamplesMismatches, *FuzzyFunctionSampleValid,
*FuzzyFunctionSampleInvalid, *FuzzyFunctionNumOfSamplesValid,
*FuzzyFunctionNumOfSamplesInvalid, *FuzzyFunctionSignalIsDrifting,
*FuzzyFunctionSignalIsStable //, *FuzzyFunctionSignalConditionLookBack,
//*FuzzyFunctionSignalConditionHistoryDesicion, DriftLookbackRange
));
DetectedSignalStates.addEntry(S);
+ this->StateWasCreated = true;
return S;
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
diff --git a/include/rosa/agent/StateDetector.hpp b/include/rosa/agent/StateDetector.hpp
index 6f3d7ce..8855e56 100644
--- a/include/rosa/agent/StateDetector.hpp
+++ b/include/rosa/agent/StateDetector.hpp
@@ -1,64 +1,72 @@
//===-- rosa/agent/StateDetector.hpp ----------------------*- C++ -*-===//
//
// The RoSA Framework
//
// Distributed under the terms and conditions of the Boost Software License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/StateDetector.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *state detector* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_STATEDETECTOR_HPP
#define ROSA_AGENT_STATEDETECTOR_HPP
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/History.hpp"
#include <vector>
namespace rosa {
namespace agent {
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE,
HistoryPolicy HP>
class StateDetector : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence abstraction type is not to arithmetic");
STATIC_ASSERT((std::is_arithmetic<PROCDATATYPE>::value),
"process type is not to arithmetic");
protected:
using PartFuncPointer =
std::shared_ptr<PartialFunction<INDATATYPE, CONFDATATYPE>>;
using StepFuncPointer =
std::shared_ptr<StepFunction<INDATATYPE, CONFDATATYPE>>;
/// The NextSignalStateID is a counter variable which stores the ID which the
/// next signal state shall have.
uint32_t NextStateID;
/// The SignalStateHasChanged is a flag that show whether a signal has changed
/// its state.
bool StateHasChanged;
+
+ /// The SignalStateWasDeleted is a flag that show whether a signal state has
+ /// been deleted.
+ bool StateWasDeleted;
+
+ /// The SignalStateWasCreated is a flag that show whether a signal state has
+ /// been created.
+ bool StateWasCreated;
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Apr 26, 10:49 PM (1 d, 4 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
134461
Default Alt Text
(54 KB)
Attached To
Mode
R20 SoC_Rosa_repo
Attached
Detach File
Event Timeline
Log In to Comment