Page MenuHomePhorge

No OneTemporary

Size
54 KB
Referenced Files
None
Subscribers
None
diff --git a/apps/ccam/ccam.cpp b/apps/ccam/ccam.cpp
index d9b7d97..fb9b78c 100644
--- a/apps/ccam/ccam.cpp
+++ b/apps/ccam/ccam.cpp
@@ -1,581 +1,585 @@
//===-- apps/ccam/ccam.cpp --------------------------------------*- C++ -*-===//
//
// The RoSA Framework -- Application CCAM
//
// Distributed under the terms and conditions of the Boost Software
/// License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file apps/ccam/ccam.cpp
///
/// \author Maximilian Goetzinger (maximilian.goetzinger@tuwien.ac.at)
/// \author Benedikt Tutzer (benedikt.tutzer@tuwien.ac.at)
///
/// \date 2019
///
/// \brief The application CCAM implements the case study from the paper:
/// M. Goetzinger, N. TaheriNejad, H. A. Kholerdi, A. Jantsch, E. Willegger,
/// T. Glatzl, A.M. Rahmani, T.Sauter, P. Liljeberg: Model - Free Condition
/// Monitoring with Confidence
///
/// \todo Clean up source files of this app: add standard RoSA header comment
/// for own files and do something with 3rd party files...
//===----------------------------------------------------------------------===//
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Confidence.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include <iostream>
#include "rosa/config/version.h"
#include "rosa/agent/SignalStateDetector.hpp"
#include "rosa/agent/SystemStateDetector.hpp"
#include "rosa/app/Application.hpp"
#include "rosa/support/csv/CSVReader.hpp"
#include "rosa/support/csv/CSVWriter.hpp"
#include "rosa/support/mqtt/MQTTReader.hpp"
#include "rosa/app/AppTuple.hpp"
#include <fstream>
#include <limits>
#include <memory>
#include <streambuf>
#include "configuration.h"
#include "statehandlerutils.h"
using namespace rosa;
using namespace rosa::agent;
using namespace rosa::app;
using namespace rosa::terminal;
using namespace rosa::mqtt;
const std::string AppName = "CCAM";
int main(int argc, char **argv) {
LOG_INFO_STREAM << '\n'
<< library_string() << " -- " << Color::Red << AppName
<< "app" << Color::Default << '\n';
//
// Read the filepath of the config file of the observed system. The filepath
// is in the first argument passed to the application. Fuzzy functions etc.
// are described in this file.
//
if (argc < 2) {
LOG_ERROR("Specify config File!\nUsage:\n\tccam config.json");
return 1;
}
std::string ConfigPath = argv[1];
//
// Load config file and read in all parameters. Fuzzy functions etc. are
// described in this file.
//
if (!readConfigFile(ConfigPath)) {
LOG_ERROR_STREAM << "Could not read config from \"" << ConfigPath << "\"\n";
return 2;
}
//
// Create a CCAM context.
//
LOG_INFO("Creating Context");
std::unique_ptr<Application> AppCCAM = Application::create(AppName);
//
// Create following function which shall give information if the time gap
// between changed input(s) and changed output(s) shows already a malfunction
// of the system.
//
// ____________
// /
// /
// __________/
//
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 0.f, AppConfig.BrokenCounter, 1.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(1.f, 0.f)}},
0.f));
//
// Create following function which shall give information if the time gap
// between changed input(s) and changed output(s) still shows a
// well-functioning system.
//
// ____________
// \
// \
// \__________
//
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 1.f, AppConfig.BrokenCounter, 0.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(0.f, 0.f)}},
1.f));
//
// Create a AppAgent with SystemStateDetector functionality.
//
LOG_INFO("Create SystemStateDetector agent.");
AgentHandle SystemStateDetectorAgent = createSystemStateDetectorAgent(
AppCCAM, "SystemStateDetector", AppConfig.SignalConfigurations.size(),
BrokenDelayFunction, OkDelayFunction);
//
// Set policy of SystemStateDetectorAgent that it wait for all
// SignalStateDetectorAgents
//
std::set<size_t> pos;
for (size_t i = 0; i < AppConfig.SignalConfigurations.size(); ++i)
pos.insert(pos.end(), i);
AppCCAM->setExecutionPolicy(SystemStateDetectorAgent,
AppExecutionPolicy::awaitAll(pos));
//
// Create Vectors for all sensors, all signal related fuzzy functions, all
// signal state detectors, all signal state agents, and all input data files.
//
LOG_INFO("Creating sensors, SignalStateDetector functionalities and their "
"Abstractions.");
std::vector<AgentHandle> Sensors;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMismatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsStableFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsDriftingFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMatchFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMismatchFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleValidFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleInvalidFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesValidFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesInvalidFunctions;
std::vector<std::shared_ptr<
SignalStateDetector<float, float, float, HistoryPolicy::FIFO>>>
SignalStateDetectors;
std::vector<AgentHandle> SignalStateDetectorAgents;
std::vector<std::ifstream> DataFiles;
//
// Go through all signal state configurations (number of signals), and create
// functionalities for SignalStateDetector.
//
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
//
// Create application sensors.
//
Sensors.emplace_back(
AppCCAM->createSensor<float>(SignalConfiguration.Name + "_Sensor"));
//
// Create following function(s) which shall give information whether one
// sample matches another one (based on the relative distance between them).
//
// ____________
// / \
// / \
// __________/ \__________
//
//
SampleMatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 0.f,
-SignalConfiguration.InnerBound, 1.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 1.f,
SignalConfiguration.OuterBound, 0.f)},
},
0));
//
// Create following function(s) which shall give information whether one
// sample mismatches another one (based on the relative distance between
// them).
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SampleMismatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 1.f,
-SignalConfiguration.InnerBound, 0.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 0.f,
SignalConfiguration.OuterBound, 1.f)},
},
1));
//
// Create following function(s) which shall give information whether a
// signal is stable.
//
// ____________
// / \
// / \
// __________/ \__________
//
//
SignalIsStableFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBoundDrift,
-SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBoundDrift, 0.f,
-SignalConfiguration.InnerBoundDrift, 1.f)},
{{-SignalConfiguration.InnerBoundDrift,
SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBoundDrift,
SignalConfiguration.OuterBoundDrift},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBoundDrift, 1.f,
SignalConfiguration.OuterBoundDrift, 0.f)},
},
0));
//
// Create following function(s) which shall give information whether a
// signal is drifting.
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SignalIsDriftingFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBoundDrift,
-SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBoundDrift, 1.f,
-SignalConfiguration.InnerBoundDrift, 0.f)},
{{-SignalConfiguration.InnerBoundDrift,
SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBoundDrift,
SignalConfiguration.OuterBoundDrift},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBoundDrift, 0.f,
SignalConfiguration.OuterBoundDrift, 1.f)},
},
1));
//
// Create following function(s) which shall give information how many
// history samples match another sample.
//
// ____________
// /
// /
// __________/
//
NumOfSamplesMatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp));
//
// Create following function(s) which shall give information how many
// history samples mismatch another sample.
//
// ____________
// \
// \
// \__________
//
NumOfSamplesMismatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown));
//
// Create following function(s) which shall give information how good all
// samples in a state match each other.
//
// ____________
// / \
// / \
// __________/ \__________
//
//
SampleValidFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 0.f,
-SignalConfiguration.InnerBound, 1.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 1.f,
SignalConfiguration.OuterBound, 0.f)},
},
0));
//
// Create following function(s) which shall give information how good all
// samples in a state mismatch each other.
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SampleInvalidFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 1.f,
-SignalConfiguration.InnerBound, 0.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 0.f,
SignalConfiguration.OuterBound, 1.f)},
},
1));
//
// Create following function(s) which shall give information how many
// history samples match each other.
//
// ____________
// /
// /
// __________/
//
NumOfSamplesValidFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp));
//
// Create following function(s) which shall give information how many
// history samples mismatch each other.
//
// ____________
// \
// \
// \__________
//
NumOfSamplesInvalidFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown));
//
// Create SignalStateDetector functionality
//
SignalStateDetectors.emplace_back(
new SignalStateDetector<float, float, float, HistoryPolicy::FIFO>(
SignalConfiguration.Output ? SignalProperties::OUTPUT
: SignalProperties::INPUT,
std::numeric_limits<int>::max(), SampleMatchesFunctions.back(),
SampleMismatchesFunctions.back(), NumOfSamplesMatchFunctions.back(),
NumOfSamplesMismatchFunctions.back(), SampleValidFunctions.back(),
SampleInvalidFunctions.back(), NumOfSamplesValidFunctions.back(),
NumOfSamplesInvalidFunctions.back(),
SignalIsDriftingFunctions.back(), SignalIsStableFunctions.back(),
SignalConfiguration.SampleHistorySize, SignalConfiguration.DABSize,
SignalConfiguration.DABHistorySize));
//
// Create low-level application agents
//
SignalStateDetectorAgents.push_back(createSignalStateDetectorAgent(
AppCCAM, SignalConfiguration.Name, SignalStateDetectors.back()));
AppCCAM->setExecutionPolicy(
SignalStateDetectorAgents.back(),
AppExecutionPolicy::decimation(AppConfig.DownsamplingRate));
//
// Connect sensors to low-level agents.
//
LOG_INFO("Connect sensors to their corresponding low-level agents.");
AppCCAM->connectSensor(SignalStateDetectorAgents.back(), 0, Sensors.back(),
SignalConfiguration.Name + "_Sensor ->" +
SignalConfiguration.Name +
"_SignalStateDetector_Agent-Channel");
AppCCAM->connectAgents(
SystemStateDetectorAgent, SignalStateDetectors.size() - 1,
SignalStateDetectorAgents.back(),
SignalConfiguration.Name +
"_SignalStateDetector_Agent->SystemStateDetector_Agent_Channel");
}
//
// For simulation output, create a logger agent writing the output of the
// high-level agent into a CSV file.
//
LOG_INFO("Create a logger agent.");
// Create CSV writer.
std::ofstream OutputCSV(AppConfig.OutputFilePath);
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
OutputCSV << SignalConfiguration.Name + ",";
}
OutputCSV << "StateID,";
OutputCSV << "Confidence State Valid,";
OutputCSV << "Confidence State Invalid,";
OutputCSV << "Confidence Inputs Matching,";
OutputCSV << "Confidence Inputs Mismatching,";
OutputCSV << "Confidence Outputs Matching,";
OutputCSV << "Confidence Outputs Mismatching,";
OutputCSV << "Confidence State Stable,";
OutputCSV << "Confidence State Drifting,";
OutputCSV << "State Condition,";
OutputCSV << "Confidence System Functioning,";
OutputCSV << "Confidence System Malfunctioning,";
OutputCSV << "Overall Confidence,";
//=== Log Signal State Detector Outputs ===//
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
OutputCSV << SignalConfiguration.Name + " StateID,";
OutputCSV << SignalConfiguration.Name + " Confidence Matching,";
OutputCSV << SignalConfiguration.Name + " Confidence Mismatching,";
OutputCSV << SignalConfiguration.Name + " Confidence State Valid,";
OutputCSV << SignalConfiguration.Name + " Confidence State Invalid,";
OutputCSV << SignalConfiguration.Name + " Confidence State Stable,";
OutputCSV << SignalConfiguration.Name + " Confidence State Drifting,";
OutputCSV << SignalConfiguration.Name + " StateJustGotValid,";
OutputCSV << SignalConfiguration.Name + " StateValidAfterReentrance,";
+
+ OutputCSV << SignalConfiguration.Name + " StateHasChanged,";
+ OutputCSV << SignalConfiguration.Name + " StateWasDeleted,";
+ OutputCSV << SignalConfiguration.Name + " StateWasCreated,";
}
//===//
OutputCSV << "\n";
// The agent writes each new input value into a CSV file and produces
// nothing.
using Input = std::pair<SystemStateTuple, bool>;
using Result = Optional<AppTuple<unit_t>>;
using Handler = std::function<Result(Input)>;
std::string Name = "Logger Agent";
AgentHandle LoggerAgent = AppCCAM->createAgent(
"Logger Agent", Handler([&OutputCSV](Input I) -> Result {
const SystemStateTuple &T = I.first;
OutputCSV << std::get<0>(
static_cast<const std::tuple<std::string> &>(T))
<< std::endl;
return Result();
}));
//
// Connect the high-level agent to the logger agent.
//
LOG_INFO("Connect the high-level agent to the logger agent.");
AppCCAM->connectAgents(LoggerAgent, 0, SystemStateDetectorAgent,
"SystemStateDetector Channel");
//
// Only log if the SystemStateDetector actually ran
//
AppCCAM->setExecutionPolicy(LoggerAgent, AppExecutionPolicy::awaitAll({0}));
//
// Do simulation.
//
LOG_INFO("Setting up and performing simulation.");
//
// Initialize application for simulation.
//
AppCCAM->initializeSimulation();
//
// Open CSV files and register them for their corresponding sensors.
//
// Make sure DataFiles will not change capacity while adding elements to it.
// Changing capacity moves elements away, which invalidates references
// captured by CSVIterator.
DataFiles.reserve(AppConfig.SignalConfigurations.size());
uint32_t i = 0;
bool hasMQTT = false;
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
switch (SignalConfiguration.DataInterfaceType) {
case DataInterfaceTypes::CSV:
DataFiles.emplace_back(SignalConfiguration.InputPath);
if (!DataFiles.at(i)) {
LOG_ERROR_STREAM << "Cannot open Input File \""
<< SignalConfiguration.InputPath << "\" for Signal \""
<< SignalConfiguration.Name << "\"" << std::endl;
return 3;
}
AppCCAM->registerSensorValues(Sensors.at(i),
csv::CSVIterator<float>(DataFiles.at(i)),
csv::CSVIterator<float>());
LOG_INFO_STREAM << "Sensor " << SignalConfiguration.Name
<< " is fed by csv file " << SignalConfiguration.InputPath
<< std::endl;
break;
case DataInterfaceTypes::MQTT: {
hasMQTT = true;
auto it = MQTTIterator<float>(SignalConfiguration.MQTTTopic);
AppCCAM->registerSensorValues(Sensors.at(i), std::move(it),
MQTTIterator<float>());
LOG_INFO_STREAM << "Sensor " << SignalConfiguration.Name
<< " is fed by MQTT topic "
<< SignalConfiguration.MQTTTopic << std::endl;
break;
}
default:
LOG_ERROR_STREAM << "No data source for " << SignalConfiguration.Name
<< std::endl;
break;
}
i++;
}
//
// Start simulation.
//
auto &log = LOG_WARNING_STREAM;
log << "Simulation starting.";
if (hasMQTT) {
log << " Publishing MQTT messages may start.";
}
log << std::endl;
AppCCAM->simulate(AppConfig.NumberOfSimulationCycles);
return 0;
}
diff --git a/apps/ccam/statehandlerutils.h b/apps/ccam/statehandlerutils.h
index 2c9d38f..d5e3501 100644
--- a/apps/ccam/statehandlerutils.h
+++ b/apps/ccam/statehandlerutils.h
@@ -1,290 +1,307 @@
#ifndef STATEHANDLERUTILS_H
#define STATEHANDLERUTILS_H
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Confidence.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include <functional>
#include <iostream>
#include <tuple>
#include <vector>
#include "rosa/config/version.h"
#include "rosa/agent/SignalStateDetector.hpp"
#include "rosa/agent/SystemStateDetector.hpp"
#include "rosa/app/Application.hpp"
#include "rosa/support/csv/CSVReader.hpp"
#include "rosa/support/csv/CSVWriter.hpp"
#include <fstream>
#include <limits>
#include <memory>
#include <streambuf>
using namespace rosa;
using namespace rosa::agent;
using namespace rosa::app;
using namespace rosa::terminal;
// For the convinience to write a shorter data type name
using SignalStateTuple =
AppTuple<float, uint32_t, uint8_t, float, float, float, float, float, float,
uint8_t, uint32_t, uint8_t>;
AgentHandle createSignalStateDetectorAgent(
std::unique_ptr<Application> &C, const std::string &Name,
std::shared_ptr<
SignalStateDetector<float, float, float, HistoryPolicy::FIFO>>
SigSD) {
using Input = std::pair<AppTuple<float>, bool>;
using Result = Optional<SignalStateTuple>;
using Handler = std::function<Result(Input)>;
return C->createAgent(
Name, Handler([&, Name, SigSD](Input I) -> Result {
LOG_INFO_STREAM << "\n******\n"
<< Name << " " << (I.second ? "<New>" : "<Old>")
<< " value: "
<< std::get<0>(
static_cast<std::tuple<float> &>(I.first))
<< "\n******\n";
auto StateInfo = SigSD->detectSignalState(
std::get<0>(static_cast<std::tuple<float> &>(I.first)));
if (I.second) {
SignalStateTuple Res = {
std::get<0>(static_cast<std::tuple<float> &>(I.first)),
StateInfo.StateID,
StateInfo.SignalProperty,
StateInfo.ConfidenceOfMatchingState,
StateInfo.ConfidenceOfMismatchingState,
StateInfo.ConfidenceStateIsValid,
StateInfo.ConfidenceStateIsInvalid,
StateInfo.ConfidenceStateIsStable,
StateInfo.ConfidenceStateIsDrifting,
StateInfo.StateCondition,
StateInfo.NumberOfInsertedSamplesAfterEntrance,
static_cast<uint8_t>(
+ (SigSD->stateHasChanged() ? 32 : 0) +
+ (SigSD->stateWasDeleted() ? 16 : 0) +
+ (SigSD->stateWasCreated() ? 8 : 0) +
(StateInfo.StateIsValid ? 4 : 0) +
(StateInfo.StateJustGotValid ? 2 : 0) +
(StateInfo.StateIsValidAfterReentrance ? 1 : 0))};
return Result(Res);
}
return Result();
}));
}
// System State
using SystemStateTuple = AppTuple<std::string>;
template <std::size_t size, typename ret, typename functype, typename... A>
struct Handler_helper;
template <typename B, typename func, typename A, typename... As>
struct function_helper {
static_assert(std::conjunction_v<std::is_same<A, As>...>,
"All types need to be identical");
static B function(A valA, As... valAs) {
std::vector<A> ar({valA, valAs...});
return func()(ar);
}
};
template <typename ret, typename typeA, typename functype, typename... B>
struct Handler_helper<0, ret, functype, typeA, B...> {
using handler = function_helper<ret, functype, B...>;
};
template <std::size_t size, typename ret, typename typeA, typename functype,
typename... B>
struct Handler_helper<size, ret, functype, typeA, B...> {
using handler =
typename Handler_helper<size - 1, ret, functype, typeA,
std::pair<typeA, bool>, B...>::handler;
};
template <std::size_t size, typename ret, typename functype, typename typeA>
using Handler = typename Handler_helper<size, ret, functype, typeA>::handler;
// TODO: Change it from global to local variable if possible
std::shared_ptr<
SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO>>
SysSD;
template <typename ret, typename A> struct function {
ret operator()(A a) {
std::vector<SignalStateInformation<float>> SignalStateInfos;
+ std::vector<uint8_t> SignalStateDecisions;
std::stringstream OutString;
for (auto _SignalStateTuple : a) {
// convert tuple to info struct out.push_back({});
OutString << std::get<0>(_SignalStateTuple.first) << ",";
SignalStateInformation<float> Info;
Info.StateID = std::get<1>(_SignalStateTuple.first);
Info.SignalProperty =
static_cast<SignalProperties>(std::get<2>(_SignalStateTuple.first));
Info.ConfidenceOfMatchingState = std::get<3>(_SignalStateTuple.first);
Info.ConfidenceOfMismatchingState = std::get<4>(_SignalStateTuple.first);
Info.ConfidenceStateIsValid = std::get<5>(_SignalStateTuple.first);
Info.ConfidenceStateIsInvalid = std::get<6>(_SignalStateTuple.first);
Info.ConfidenceStateIsStable = std::get<7>(_SignalStateTuple.first);
Info.ConfidenceStateIsDrifting = std::get<8>(_SignalStateTuple.first);
Info.StateCondition =
static_cast<StateConditions>(std::get<9>(_SignalStateTuple.first));
Info.NumberOfInsertedSamplesAfterEntrance =
std::get<10>(_SignalStateTuple.first);
Info.StateIsValid = (std::get<11>(_SignalStateTuple.first) & 4) > 0;
Info.StateJustGotValid = (std::get<11>(_SignalStateTuple.first) & 2) > 0;
Info.StateIsValidAfterReentrance =
(std::get<11>(_SignalStateTuple.first) & 1) > 0;
SignalStateInfos.push_back(Info);
+
+ uint8_t decisions = std::get<11>(_SignalStateTuple.first);
+ SignalStateDecisions.push_back(decisions);
}
SystemStateInformation<float> SystemStateInfo =
SysSD->detectSystemState(SignalStateInfos);
OutString << SystemStateInfo.StateID << ",";
OutString << SystemStateInfo.ConfidenceStateIsValid << ",";
OutString << SystemStateInfo.ConfidenceStateIsInvalid << ",";
OutString << SystemStateInfo.ConfidenceOfInputsMatchingState << ",";
OutString << SystemStateInfo.ConfidenceOfInputsMismatchingState << ",";
OutString << SystemStateInfo.ConfidenceOfOutputsMatchingState << ",";
OutString << SystemStateInfo.ConfidenceOfOutputsMismatchingState << ",";
OutString << SystemStateInfo.ConfidenceStateIsStable << ",";
OutString << SystemStateInfo.ConfidenceStateIsDrifting << ",";
OutString << SystemStateInfo.StateCondition << ",";
OutString << SystemStateInfo.ConfidenceSystemIsFunctioning << ",";
OutString << SystemStateInfo.ConfidenceSystemIsMalfunctioning << ",";
OutString << SystemStateInfo.ConfidenceOfAllDecisions << ",";
//=== Log Signal State Detector Outputs ===//
+ int i = 0;
for (auto SSI : SignalStateInfos) {
OutString << SSI.StateID << ",";
OutString << SSI.ConfidenceOfMatchingState << ",";
OutString << SSI.ConfidenceOfMismatchingState << ",";
OutString << SSI.ConfidenceStateIsValid << ",";
OutString << SSI.ConfidenceStateIsInvalid << ",";
OutString << SSI.ConfidenceStateIsStable << ",";
OutString << SSI.ConfidenceStateIsDrifting << ",";
OutString << SSI.StateJustGotValid << ",";
OutString << SSI.StateIsValidAfterReentrance << ",";
+
+ uint8_t decisions = SignalStateDecisions[i];
+ OutString << ((decisions & 32) > 0) << ","; //StateHasChanged
+ OutString << ((decisions & 16) > 0) << ","; //StateWasDeleted
+ OutString << ((decisions & 8) > 0) << ","; //StateWasCreated
+ //OutString << ((decisions & 4) > 0) << ","; //StateHasChanged
+ //OutString << ((decisions & 2) > 0) << ","; //StateWasDeleted
+ //OutString << ((decisions & 1) > 0) << ","; //StateWasCreated
+ i++;
}
return ret(std::make_tuple<std::string>(OutString.str()));
}
};
using arr = std::vector<std::pair<SignalStateTuple, bool>>;
template <size_t NumOfSlaves>
AgentHandle createSystemStateDetectorAgent(
std::unique_ptr<Application> &C, const std::string &Name,
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction,
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction) {
LOG_TRACE("Creating fixed SystemStateDetectorAgent");
using Input = SignalStateTuple;
using Result = Optional<SystemStateTuple>;
std::shared_ptr<
SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO>>
_SysSD(
new SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO>(
std::numeric_limits<uint32_t>::max(), NumOfSlaves,
BrokenDelayFunction, OkDelayFunction));
SysSD = _SysSD;
auto HandlerFunction =
Handler<NumOfSlaves, Result, function<Optional<SystemStateTuple>, arr>,
Input>::function;
return C->createAgent(Name, std::function(HandlerFunction));
}
AgentHandle createSystemStateDetectorAgent(
std::unique_ptr<Application> &C, const std::string &Name,
size_t NumOfSlaves,
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction,
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction) {
LOG_TRACE("Creating dynamic SystemStateDetectorAgent");
switch (NumOfSlaves) {
// clang-format off
case 2: return createSystemStateDetectorAgent< 2>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 3: return createSystemStateDetectorAgent< 3>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 4: return createSystemStateDetectorAgent< 4>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 5: return createSystemStateDetectorAgent< 5>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 6: return createSystemStateDetectorAgent< 6>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 7: return createSystemStateDetectorAgent< 7>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 8: return createSystemStateDetectorAgent< 8>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 9: return createSystemStateDetectorAgent< 9>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 10: return createSystemStateDetectorAgent<10>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 11: return createSystemStateDetectorAgent<11>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 12: return createSystemStateDetectorAgent<12>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 13: return createSystemStateDetectorAgent<13>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 14: return createSystemStateDetectorAgent<14>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 15: return createSystemStateDetectorAgent<15>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 16: return createSystemStateDetectorAgent<16>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 17: return createSystemStateDetectorAgent<17>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 18: return createSystemStateDetectorAgent<18>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 19: return createSystemStateDetectorAgent<19>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 20: return createSystemStateDetectorAgent<20>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 21: return createSystemStateDetectorAgent<21>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 22: return createSystemStateDetectorAgent<22>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 23: return createSystemStateDetectorAgent<23>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 24: return createSystemStateDetectorAgent<24>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 25: return createSystemStateDetectorAgent<25>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 1:
default: return createSystemStateDetectorAgent<1>(C, Name, BrokenDelayFunction, OkDelayFunction);
// clang-format on
}
}
// template <typename T, typename>
// AgentHandle createMQTTSensor(std::string MQTTTopic) {
// using Input = void;
// using Result = Optional<T>;
// using Handler = std::function<Result(Input)>;
// return C->createAgent(
// Name, Handler([&, Name, SigSD](Input I) -> Result {
// LOG_INFO_STREAM << "\n******\n"
// << Name << " " << (I.second ? "<New>" : "<Old>")
// << " value: "
// << std::get<0>(
// static_cast<std::tuple<float> &>(I.first))
// << "\n******\n";
// auto StateInfo = SigSD->detectSignalState(
// std::get<0>(static_cast<std::tuple<float> &>(I.first)));
// if (I.second) {
// SignalStateTuple Res = {
// std::get<0>(static_cast<std::tuple<float> &>(I.first)),
// StateInfo.StateID,
// StateInfo.SignalProperty,
// StateInfo.ConfidenceOfMatchingState,
// StateInfo.ConfidenceOfMismatchingState,
// StateInfo.ConfidenceStateIsValid,
// StateInfo.ConfidenceStateIsInvalid,
// StateInfo.ConfidenceStateIsStable,
// StateInfo.ConfidenceStateIsDrifting,
// StateInfo.StateCondition,
// StateInfo.NumberOfInsertedSamplesAfterEntrance,
// static_cast<uint8_t>(
// (StateInfo.StateIsValid ? 4 : 0) +
// (StateInfo.StateJustGotValid ? 2 : 0) +
// (StateInfo.StateIsValidAfterReentrance ? 1 : 0))};
// return Result(Res);
// }
// return Result();
// }));
// }
#endif // STATEHANDLERUTILS_H
diff --git a/include/rosa/agent/SignalStateDetector.hpp b/include/rosa/agent/SignalStateDetector.hpp
index 8a7d3c1..3ac8c07 100644
--- a/include/rosa/agent/SignalStateDetector.hpp
+++ b/include/rosa/agent/SignalStateDetector.hpp
@@ -1,332 +1,351 @@
//===-- rosa/agent/SignalStateDetector.hpp ----------------------*- C++ -*-===//
//
// The RoSA Framework
//
// Distributed under the terms and conditions of the Boost Software License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SignalStateDetector.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *signal state detector* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
#define ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
#include "rosa/agent/Functionality.h"
#include "rosa/agent/SignalState.hpp"
#include "rosa/agent/StateDetector.hpp"
#include <vector>
namespace rosa {
namespace agent {
/// Implements \c rosa::agent::SignalStateDetector as a functionality that
/// detects signal states given on input samples.
///
/// \note This implementation is supposed to be used for samples of an
/// arithmetic type.
///
/// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of
/// data in that the confidence values are given, \tparam PROCDATATYPE type of
/// the relative distance and the type of data in which DABs are saved.
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE,
HistoryPolicy HP>
class SignalStateDetector
: public StateDetector<INDATATYPE, CONFDATATYPE, PROCDATATYPE, HP> {
using StateDetector =
StateDetector<INDATATYPE, CONFDATATYPE, PROCDATATYPE, HP>;
using PartFuncPointer = typename StateDetector::PartFuncPointer;
using StepFuncPointer = typename StateDetector::StepFuncPointer;
private:
// For the convinience to write a shorter data type name
using SignalStatePtr =
std::shared_ptr<SignalState<INDATATYPE, CONFDATATYPE, PROCDATATYPE>>;
/// The SignalProperty saves whether the monitored signal is an input our
/// output signal.
SignalProperties SignalProperty;
/// The CurrentSignalState is a pointer to the (saved) signal state in which
/// the actual variable (signal) of the observed system is.
SignalStatePtr CurrentSignalState;
/// The DetectedSignalStates is a history in that all detected signal states
/// are saved.
DynamicLengthHistory<SignalStatePtr, HP> DetectedSignalStates;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history. This is done to evaluate whether one sample belongs to an
/// existing state.
PartFuncPointer FuzzyFunctionSampleMatches;
/// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history. This is done to evaluate whether one sample does not belong to an
/// existing state.
PartFuncPointer FuzzyFunctionSampleMismatches;
/// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sample history match the new sample.
/// This is done to evaluate whether one sample belongs to an existing state.
StepFuncPointer FuzzyFunctionNumOfSamplesMatches;
/// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch the new
/// sample. This is done to evaluate whether one sample does not belong to an
/// existing state.
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSampleValid is the fuzzy function that gives the
/// confidence how good one matches another sample in the sample
/// history. This is done to evaluate whether a state is valid.
PartFuncPointer FuzzyFunctionSampleValid;
/// The FuzzyFunctionSampleInvalid is the fuzzy function that gives the
/// confidence how bad one sample matches another sample in the sample
/// history. This is done to evaluate whether a state is invalid.
PartFuncPointer FuzzyFunctionSampleInvalid;
/// The FuzzyFunctionNumOfSamplesValid is the fuzzy function that gives the
/// confidence how many samples from the sample history match another sample.
/// This is done to evaluate whether a state is valid.
StepFuncPointer FuzzyFunctionNumOfSamplesValid;
/// The FuzzyFunctionNumOfSamplesInvalid is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch another
/// sample. This is done to evaluate whether a state is invalid.
StepFuncPointer FuzzyFunctionNumOfSamplesInvalid;
/// The FuzzyFunctionSignalIsDrifting is the fuzzy function that gives the
/// confidence how likely it is that the signal is drifting.
PartFuncPointer FuzzyFunctionSignalIsDrifting;
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal is stable (not drifting).
PartFuncPointer FuzzyFunctionSignalIsStable;
/// TODO: describe
std::shared_ptr<PartialFunction<uint32_t, float>>
FuzzyFunctionSignalConditionLookBack;
/// TODO: describe
std::shared_ptr<PartialFunction<uint32_t, float>>
FuzzyFunctionSignalConditionHistoryDesicion;
/// TODO: describe
uint32_t DriftLookbackRange;
/// SampleHistorySize is the (maximum) size of the sample history.
uint32_t SampleHistorySize;
/// DABSize the size of a DAB (Discrete Average Block).
uint32_t DABSize;
/// DABHistorySize is the (maximum) size of the DAB history.
uint32_t DABHistorySize;
public:
/// Creates an instance by setting all parameters
/// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
/// fuzzy function that gives the confidence how good the new sample matches
/// another sample in the sample history.
///
/// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
/// the fuzzy function that gives the confidence how bad the new sample
/// matches another sample in the sample history.
///
/// \param FuzzyFunctionNumOfSamplesMatches The
/// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
///
/// \param FuzzyFunctionNumOfSamplesMismatches The
/// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history mismatch the new
/// sample.
///
/// \param FuzzyFunctionSignalIsDrifting The FuzzyFunctionSignalIsDrifting is
/// the fuzzy function that gives the confidence how likely it is that the
/// signal (resp. the state of a signal) is drifting.
///
/// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
/// fuzzy function that gives the confidence how likely it is that the signal
/// (resp. the state of a signal) is stable (not drifting).
///
/// \param SampleHistorySize Sets the History size which will be used by \c
/// SignalState.
///
/// \param DABSize Sets the DAB size which will be used by \c SignalState.
///
/// \param DABHistorySize Sets the size which will be used by \c SignalState.
///
SignalStateDetector(SignalProperties SignalProperty,
uint32_t MaximumNumberOfSignalStates,
PartFuncPointer FuzzyFunctionSampleMatches,
PartFuncPointer FuzzyFunctionSampleMismatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches,
PartFuncPointer FuzzyFunctionSampleValid,
PartFuncPointer FuzzyFunctionSampleInvalid,
StepFuncPointer FuzzyFunctionNumOfSamplesValid,
StepFuncPointer FuzzyFunctionNumOfSamplesInvalid,
PartFuncPointer FuzzyFunctionSignalIsDrifting,
PartFuncPointer FuzzyFunctionSignalIsStable,
// std::shared_ptr<PartialFunction<uint32_t, float>>
// FuzzyFunctionSignalConditionLookBack,
// std::shared_ptr<PartialFunction<uint32_t, float>>
// FuzzyFunctionSignalConditionHistoryDesicion,
// uint32_t DriftLookbackRange,
uint32_t SampleHistorySize, uint32_t DABSize,
uint32_t DABHistorySize) noexcept
: SignalProperty(SignalProperty), CurrentSignalState(nullptr),
DetectedSignalStates(MaximumNumberOfSignalStates),
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSampleValid(FuzzyFunctionSampleValid),
FuzzyFunctionSampleInvalid(FuzzyFunctionSampleInvalid),
FuzzyFunctionNumOfSamplesValid(FuzzyFunctionNumOfSamplesValid),
FuzzyFunctionNumOfSamplesInvalid(FuzzyFunctionNumOfSamplesInvalid),
FuzzyFunctionSignalIsDrifting(FuzzyFunctionSignalIsDrifting),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable),
// FuzzyFunctionSignalConditionLookBack(
// FuzzyFunctionSignalConditionLookBack),
// FuzzyFunctionSignalConditionHistoryDesicion(
// FuzzyFunctionSignalConditionHistoryDesicion),
// DriftLookbackRange(DriftLookbackRange),
SampleHistorySize(SampleHistorySize), DABSize(DABSize),
DABHistorySize(DABHistorySize) {
this->NextStateID = 1;
this->StateHasChanged = false;
+ this->StateWasDeleted = false;
+ this->StateWasCreated = false;
}
/// Destroys \p this object.
~SignalStateDetector(void) = default;
/// Detects the signal state to which the new sample belongs or create a new
/// signal state if the new sample does not match to any of the saved states.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the information of the current signal state (signal state ID and
/// other parameters).
// TODO (future): change this function to an operator()-function
SignalStateInformation<CONFDATATYPE>
detectSignalState(INDATATYPE Sample) noexcept {
+ this->StateHasChanged = false;
+ this->StateWasDeleted = false;
+ this->StateWasCreated = false;
+
if (!CurrentSignalState) {
ASSERT(DetectedSignalStates.empty());
SignalStatePtr S = createNewSignalState();
CurrentSignalState = S;
} else {
// TODO (future): maybe there is a better way than a relative distance
// comparison. Maybe somehow a mix of relative and absolute?
CONFDATATYPE ConfidenceSampleMatchesSignalState =
CurrentSignalState->confidenceSampleMatchesSignalState(Sample);
CONFDATATYPE ConfidenceSampleMismatchesSignalState =
CurrentSignalState->confidenceSampleMismatchesSignalState(Sample);
this->StateHasChanged = ConfidenceSampleMatchesSignalState <=
ConfidenceSampleMismatchesSignalState;
if (this->StateHasChanged) {
+ this->StateWasDeleted = !CurrentSignalState->signalStateInformation().StateIsValid;
if (CurrentSignalState->signalStateInformation().StateIsValid)
CurrentSignalState->leaveSignalState();
else
DetectedSignalStates.deleteEntry(CurrentSignalState);
// TODO (future): additionally save averages to enable fast iteration
// through recorded signl state history (maybe sort vector based on
// these average values)
CurrentSignalState = nullptr;
for (auto &SavedSignalState : DetectedSignalStates) {
ConfidenceSampleMatchesSignalState =
SavedSignalState->confidenceSampleMatchesSignalState(Sample);
ConfidenceSampleMismatchesSignalState =
SavedSignalState->confidenceSampleMismatchesSignalState(Sample);
if (ConfidenceSampleMatchesSignalState >
ConfidenceSampleMismatchesSignalState) {
// TODO (future): maybe it would be better to compare
// ConfidenceSampleMatchesSignalState of all signal states in the
// vector in order to find the best matching signal state.
CurrentSignalState = SavedSignalState;
break;
}
}
if (!CurrentSignalState) {
SignalStatePtr S = createNewSignalState();
CurrentSignalState = S;
}
}
}
SignalStateInformation<CONFDATATYPE> SignalStateInfo =
CurrentSignalState->insertSample(Sample);
if (SignalStateInfo.StateJustGotValid) {
this->NextStateID++;
}
return SignalStateInfo;
}
/// Gives information about the current signal state.
///
/// \return a struct SignalStateInformation that contains information about
/// the current signal state or NULL if no current signal state exists.
SignalStateInformation<CONFDATATYPE>
currentSignalStateInformation(void) noexcept {
if (CurrentSignalState) {
return CurrentSignalState->signalStateInformation();
} else {
return NULL;
}
}
/// Gives information whether a signal state change has happened or not.
///
/// \return true if a signal state change has happened, and false if not.
bool stateHasChanged(void) noexcept { return this->StateHasChanged; }
+ /// Gives information whether a signal state has been created or not.
+ ///
+ /// \return true if a signal state has been deleted, and false if not.
+ bool stateWasDeleted(void) noexcept { return this->StateWasDeleted; }
+
+ /// Gives information whether a signal state has been created or not.
+ ///
+ /// \return true if a signal state has been created, and false if not.
+ bool stateWasCreated(void) noexcept { return this->StateWasCreated; }
+
+
private:
/// Creates a new signal state and adds it to the signal state vector in which
/// all known states are saved.
///
/// \return a pointer to the newly created signal state or NULL if no state
/// could be created.
SignalStatePtr createNewSignalState(void) noexcept {
SignalStatePtr S(new SignalState<INDATATYPE, CONFDATATYPE, PROCDATATYPE>(
this->NextStateID, SignalProperty, SampleHistorySize, DABSize,
DABHistorySize, *FuzzyFunctionSampleMatches,
*FuzzyFunctionSampleMismatches, *FuzzyFunctionNumOfSamplesMatches,
*FuzzyFunctionNumOfSamplesMismatches, *FuzzyFunctionSampleValid,
*FuzzyFunctionSampleInvalid, *FuzzyFunctionNumOfSamplesValid,
*FuzzyFunctionNumOfSamplesInvalid, *FuzzyFunctionSignalIsDrifting,
*FuzzyFunctionSignalIsStable //, *FuzzyFunctionSignalConditionLookBack,
//*FuzzyFunctionSignalConditionHistoryDesicion, DriftLookbackRange
));
DetectedSignalStates.addEntry(S);
+ this->StateWasCreated = true;
return S;
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
diff --git a/include/rosa/agent/StateDetector.hpp b/include/rosa/agent/StateDetector.hpp
index 6f3d7ce..8855e56 100644
--- a/include/rosa/agent/StateDetector.hpp
+++ b/include/rosa/agent/StateDetector.hpp
@@ -1,64 +1,72 @@
//===-- rosa/agent/StateDetector.hpp ----------------------*- C++ -*-===//
//
// The RoSA Framework
//
// Distributed under the terms and conditions of the Boost Software License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/StateDetector.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *state detector* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_STATEDETECTOR_HPP
#define ROSA_AGENT_STATEDETECTOR_HPP
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/History.hpp"
#include <vector>
namespace rosa {
namespace agent {
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE,
HistoryPolicy HP>
class StateDetector : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence abstraction type is not to arithmetic");
STATIC_ASSERT((std::is_arithmetic<PROCDATATYPE>::value),
"process type is not to arithmetic");
protected:
using PartFuncPointer =
std::shared_ptr<PartialFunction<INDATATYPE, CONFDATATYPE>>;
using StepFuncPointer =
std::shared_ptr<StepFunction<INDATATYPE, CONFDATATYPE>>;
/// The NextSignalStateID is a counter variable which stores the ID which the
/// next signal state shall have.
uint32_t NextStateID;
/// The SignalStateHasChanged is a flag that show whether a signal has changed
/// its state.
bool StateHasChanged;
+
+ /// The SignalStateWasDeleted is a flag that show whether a signal state has
+ /// been deleted.
+ bool StateWasDeleted;
+
+ /// The SignalStateWasCreated is a flag that show whether a signal state has
+ /// been created.
+ bool StateWasCreated;
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATEDETECTOR_HPP

File Metadata

Mime Type
text/x-diff
Expires
Sat, Apr 26, 10:49 PM (1 d, 4 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
134461
Default Alt Text
(54 KB)

Event Timeline