Page Menu
Home
Phorge
Search
Configure Global Search
Log In
Files
F386330
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Size
98 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/apps/ccam/CMakeLists.txt b/apps/ccam/CMakeLists.txt
index 26da617..65e5f44 100644
--- a/apps/ccam/CMakeLists.txt
+++ b/apps/ccam/CMakeLists.txt
@@ -1,7 +1,16 @@
set(SOURCES configuration.h)
set(SOURCES statehandlerutils.h)
+# Allow warnings for paho.mqtt.cpp
+if ( ROSA_COMPILER_IS_GCC_COMPATIBLE )
+ remove("-Werror" CMAKE_CXX_FLAGS)
+elseif ( MSVC )
+ remove("/WX" CMAKE_CXX_FLAGS)
+endif()
+
ROSA_add_app(ccam ccam.cpp)
ROSA_add_library_dependencies(ccam ROSAConfig)
ROSA_add_library_dependencies(ccam ROSAApp)
ROSA_add_library_dependencies(ccam ROSAAgent)
+ROSA_add_library_dependencies(mqtt-client paho-mqttpp3)
+ROSA_add_library_dependencies(mqtt-client paho-mqttc3::MQTTAsync)
diff --git a/apps/ccam/ccam.cpp b/apps/ccam/ccam.cpp
index c110fe7..5f89a79 100644
--- a/apps/ccam/ccam.cpp
+++ b/apps/ccam/ccam.cpp
@@ -1,531 +1,545 @@
//===-- apps/ccam/ccam.cpp --------------------------------------*- C++ -*-===//
//
// The RoSA Framework -- Application CCAM
//
// Distributed under the terms and conditions of the Boost Software
/// License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file apps/ccam/ccam.cpp
///
/// \author Maximilian Goetzinger (maximilian.goetzinger@tuwien.ac.at)
/// \author Benedikt Tutzer (benedikt.tutzer@tuwien.ac.at)
///
/// \date 2019
///
/// \brief The application CCAM implements the case study from the paper:
/// M. Goetzinger, N. TaheriNejad, H. A. Kholerdi, A. Jantsch, E. Willegger,
/// T. Glatzl, A.M. Rahmani, T.Sauter, P. Liljeberg: Model - Free Condition
/// Monitoring with Confidence
///
/// \todo Clean up source files of this app: add standard RoSA header comment
/// for own files and do something with 3rd party files...
//===----------------------------------------------------------------------===//
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Confidence.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include <iostream>
#include "rosa/config/version.h"
#include "rosa/agent/SignalStateDetector.hpp"
#include "rosa/agent/SystemStateDetector.hpp"
#include "rosa/app/Application.hpp"
#include "rosa/support/csv/CSVReader.hpp"
#include "rosa/support/csv/CSVWriter.hpp"
+#include "rosa/support/mqtt/MQTTReader.hpp"
+
#include "rosa/app/AppTuple.hpp"
#include <fstream>
#include <limits>
#include <memory>
#include <streambuf>
#include "configuration.h"
#include "statehandlerutils.h"
using namespace rosa;
using namespace rosa::agent;
using namespace rosa::app;
using namespace rosa::terminal;
const std::string AppName = "CCAM";
int main(int argc, char **argv) {
LOG_INFO_STREAM << '\n'
<< library_string() << " -- " << Color::Red << AppName
<< "app" << Color::Default << '\n';
//
// Read the filepath of the config file of the observed system. The filepath
// is in the first argument passed to the application. Fuzzy functions etc.
// are described in this file.
//
if (argc < 2) {
LOG_ERROR("Specify config File!\nUsage:\n\tccam config.json");
return 1;
}
std::string ConfigPath = argv[1];
//
// Load config file and read in all parameters. Fuzzy functions etc. are
// described in this file.
//
if (!readConfigFile(ConfigPath)) {
LOG_ERROR_STREAM << "Could not read config from \"" << ConfigPath << "\"\n";
return 2;
}
//
// Create a CCAM context.
//
LOG_INFO("Creating Context");
std::unique_ptr<Application> AppCCAM = Application::create(AppName);
//
// Create following function which shall give information if the time gap
// between changed input(s) and changed output(s) shows already a malfunction
// of the system.
//
// ____________
// /
// /
// __________/
//
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 0.f, AppConfig.BrokenCounter, 1.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(1.f, 0.f)}},
0.f));
//
// Create following function which shall give information if the time gap
// between changed input(s) and changed output(s) still shows a
// well-functioning system.
//
// ____________
// \
- // \
- // \__________
+ // \
+ // \__________
//
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction(
new PartialFunction<uint32_t, float>(
{{{0, AppConfig.BrokenCounter},
std::make_shared<LinearFunction<uint32_t, float>>(
0, 1.f, AppConfig.BrokenCounter, 0.f)},
{{AppConfig.BrokenCounter, std::numeric_limits<uint32_t>::max()},
std::make_shared<LinearFunction<uint32_t, float>>(0.f, 0.f)}},
1.f));
//
// Create a AppAgent with SystemStateDetector functionality.
//
LOG_INFO("Create SystemStateDetector agent.");
AgentHandle SystemStateDetectorAgent = createSystemStateDetectorAgent(
AppCCAM, "SystemStateDetector", AppConfig.SignalConfigurations.size(),
BrokenDelayFunction, OkDelayFunction);
//
// Set policy of SystemStateDetectorAgent that it wait for all
// SignalStateDetectorAgents
//
std::set<size_t> pos;
for (size_t i = 0; i < AppConfig.SignalConfigurations.size(); ++i)
pos.insert(pos.end(), i);
AppCCAM->setExecutionPolicy(SystemStateDetectorAgent,
AppExecutionPolicy::awaitAll(pos));
//
// Create Vectors for all sensors, all signal related fuzzy functions, all
// signal state detectors, all signal state agents, and all input data files.
//
LOG_INFO("Creating sensors, SignalStateDetector functionalities and their "
"Abstractions.");
std::vector<AgentHandle> Sensors;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleMismatchesFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsStableFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SignalIsDriftingFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMatchFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesMismatchFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleValidFunctions;
std::vector<std::shared_ptr<PartialFunction<float, float>>>
SampleInvalidFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesValidFunctions;
std::vector<std::shared_ptr<StepFunction<float, float>>>
NumOfSamplesInvalidFunctions;
std::vector<std::shared_ptr<
SignalStateDetector<float, float, float, HistoryPolicy::FIFO>>>
SignalStateDetectors;
std::vector<AgentHandle> SignalStateDetectorAgents;
std::vector<std::ifstream> DataFiles;
//
// Go through all signal state configurations (number of signals), and create
// functionalities for SignalStateDetector.
//
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
//
// Create application sensors.
//
Sensors.emplace_back(
AppCCAM->createSensor<float>(SignalConfiguration.Name + "_Sensor"));
//
// Create following function(s) which shall give information whether one
// sample matches another one (based on the relative distance between them).
//
// ____________
// / \
- // / \
- // __________/ \__________
+ // / \
+ // __________/ \__________
//
//
SampleMatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 0.f,
-SignalConfiguration.InnerBound, 1.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 1.f,
SignalConfiguration.OuterBound, 0.f)},
},
0));
//
// Create following function(s) which shall give information whether one
// sample mismatches another one (based on the relative distance between
// them).
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SampleMismatchesFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 1.f,
-SignalConfiguration.InnerBound, 0.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 0.f,
SignalConfiguration.OuterBound, 1.f)},
},
1));
//
// Create following function(s) which shall give information whether a
// signal is stable.
//
// ____________
// / \
- // / \
- // __________/ \__________
+ // / \
+ // __________/ \__________
//
//
SignalIsStableFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBoundDrift,
-SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBoundDrift, 0.f,
-SignalConfiguration.InnerBoundDrift, 1.f)},
{{-SignalConfiguration.InnerBoundDrift,
SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBoundDrift,
SignalConfiguration.OuterBoundDrift},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBoundDrift, 1.f,
SignalConfiguration.OuterBoundDrift, 0.f)},
},
0));
//
// Create following function(s) which shall give information whether a
// signal is drifting.
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SignalIsDriftingFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBoundDrift,
-SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBoundDrift, 1.f,
-SignalConfiguration.InnerBoundDrift, 0.f)},
{{-SignalConfiguration.InnerBoundDrift,
SignalConfiguration.InnerBoundDrift},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBoundDrift,
SignalConfiguration.OuterBoundDrift},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBoundDrift, 0.f,
SignalConfiguration.OuterBoundDrift, 1.f)},
},
1));
//
// Create following function(s) which shall give information how many
// history samples match another sample.
//
// ____________
// /
// /
// __________/
//
NumOfSamplesMatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp));
//
// Create following function(s) which shall give information how many
// history samples mismatch another sample.
//
// ____________
// \
- // \
- // \__________
+ // \
+ // \__________
//
NumOfSamplesMismatchFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown));
//
// Create following function(s) which shall give information how good all
// samples in a state match each other.
//
// ____________
// / \
- // / \
- // __________/ \__________
+ // / \
+ // __________/ \__________
//
//
SampleValidFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 0.f,
-SignalConfiguration.InnerBound, 1.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(1.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 1.f,
SignalConfiguration.OuterBound, 0.f)},
},
0));
//
// Create following function(s) which shall give information how good all
// samples in a state mismatch each other.
//
// ____________ ____________
// \ /
// \ /
// \__________/
//
//
SampleInvalidFunctions.emplace_back(new PartialFunction<float, float>(
{
{{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(
-SignalConfiguration.OuterBound, 1.f,
-SignalConfiguration.InnerBound, 0.f)},
{{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound},
std::make_shared<LinearFunction<float, float>>(0.f, 0.f)},
{{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound},
std::make_shared<LinearFunction<float, float>>(
SignalConfiguration.InnerBound, 0.f,
SignalConfiguration.OuterBound, 1.f)},
},
1));
//
// Create following function(s) which shall give information how many
// history samples match each other.
//
// ____________
// /
// /
// __________/
//
NumOfSamplesValidFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp));
//
// Create following function(s) which shall give information how many
// history samples mismatch each other.
//
// ____________
// \
- // \
- // \__________
+ // \
+ // \__________
//
NumOfSamplesInvalidFunctions.emplace_back(new StepFunction<float, float>(
1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown));
//
// Create SignalStateDetector functionality
//
SignalStateDetectors.emplace_back(
new SignalStateDetector<float, float, float, HistoryPolicy::FIFO>(
SignalConfiguration.Output ? SignalProperties::OUTPUT
: SignalProperties::INPUT,
std::numeric_limits<int>::max(), SampleMatchesFunctions.back(),
SampleMismatchesFunctions.back(), NumOfSamplesMatchFunctions.back(),
NumOfSamplesMismatchFunctions.back(), SampleValidFunctions.back(),
SampleInvalidFunctions.back(), NumOfSamplesValidFunctions.back(),
NumOfSamplesInvalidFunctions.back(),
SignalIsDriftingFunctions.back(), SignalIsStableFunctions.back(),
SignalConfiguration.SampleHistorySize, SignalConfiguration.DABSize,
SignalConfiguration.DABHistorySize));
//
// Create low-level application agents
//
SignalStateDetectorAgents.push_back(createSignalStateDetectorAgent(
AppCCAM, SignalConfiguration.Name, SignalStateDetectors.back()));
AppCCAM->setExecutionPolicy(
SignalStateDetectorAgents.back(),
AppExecutionPolicy::decimation(AppConfig.DownsamplingRate));
//
// Connect sensors to low-level agents.
//
LOG_INFO("Connect sensors to their corresponding low-level agents.");
AppCCAM->connectSensor(SignalStateDetectorAgents.back(), 0, Sensors.back(),
SignalConfiguration.Name + "_Sensor ->" +
SignalConfiguration.Name +
"_SignalStateDetector_Agent-Channel");
AppCCAM->connectAgents(
SystemStateDetectorAgent, SignalStateDetectors.size() - 1,
SignalStateDetectorAgents.back(),
SignalConfiguration.Name +
"_SignalStateDetector_Agent->SystemStateDetector_Agent_Channel");
}
//
// For simulation output, create a logger agent writing the output of the
// high-level agent into a CSV file.
//
LOG_INFO("Create a logger agent.");
// Create CSV writer.
std::ofstream OutputCSV(AppConfig.OutputFilePath);
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
OutputCSV << SignalConfiguration.Name + ",";
}
OutputCSV << "StateID,";
OutputCSV << "Confidence State Valid,";
OutputCSV << "Confidence State Invalid,";
OutputCSV << "Confidence Inputs Matching,";
OutputCSV << "Confidence Outputs Matching,";
OutputCSV << "Confidence Inputs Mismatching,";
OutputCSV << "Confidence Outputs Mismatching,";
OutputCSV << "State Condition,";
OutputCSV << "Confidence System Functioning,";
OutputCSV << "Confidence System Malfunctioning,";
OutputCSV << "Overall Confidence,";
OutputCSV << "\n";
// The agent writes each new input value into a CSV file and produces
// nothing.
using Input = std::pair<SystemStateTuple, bool>;
using Result = Optional<AppTuple<unit_t>>;
using Handler = std::function<Result(Input)>;
std::string Name = "Logger Agent";
AgentHandle LoggerAgent = AppCCAM->createAgent(
"Logger Agent", Handler([&OutputCSV](Input I) -> Result {
const SystemStateTuple &T = I.first;
OutputCSV << std::get<0>(
static_cast<const std::tuple<std::string> &>(T))
<< std::endl;
return Result();
}));
//
// Connect the high-level agent to the logger agent.
//
LOG_INFO("Connect the high-level agent to the logger agent.");
AppCCAM->connectAgents(LoggerAgent, 0, SystemStateDetectorAgent,
"SystemStateDetector Channel");
//
// Only log if the SystemStateDetector actually ran
//
AppCCAM->setExecutionPolicy(LoggerAgent, AppExecutionPolicy::awaitAll({0}));
//
// Do simulation.
//
LOG_INFO("Setting up and performing simulation.");
//
// Initialize application for simulation.
//
AppCCAM->initializeSimulation();
//
// Open CSV files and register them for their corresponding sensors.
//
// Make sure DataFiles will not change capacity while adding elements to it.
// Changing capacity moves elements away, which invalidates references
// captured by CSVIterator.
DataFiles.reserve(AppConfig.SignalConfigurations.size());
uint32_t i = 0;
for (auto SignalConfiguration : AppConfig.SignalConfigurations) {
- DataFiles.emplace_back(SignalConfiguration.InputPath);
- if (!DataFiles.at(i)) {
- LOG_ERROR_STREAM << "Cannot open Input File \""
- << SignalConfiguration.InputPath << "\" for Signal \""
- << SignalConfiguration.Name << "\"" << std::endl;
- return 3;
- }
- AppCCAM->registerSensorValues(Sensors.at(i),
- csv::CSVIterator<float>(DataFiles.at(i)),
- csv::CSVIterator<float>());
+ switch (SignalConfiguration.DataInterfaceType) {
+ case DataInterfaceTypes::CSV:
+
+ DataFiles.emplace_back(SignalConfiguration.InputPath);
+ if (!DataFiles.at(i)) {
+ LOG_ERROR_STREAM << "Cannot open Input File \""
+ << SignalConfiguration.InputPath << "\" for Signal \""
+ << SignalConfiguration.Name << "\"" << std::endl;
+ return 3;
+ }
+
+ AppCCAM->registerSensorValues(Sensors.at(i),
+ csv::CSVIterator<float>(DataFiles.at(i)),
+ csv::CSVIterator<float>());
+
+ break;
+ case DataInterfaceTypes::MQTT:
+ AppCCAM->registerSensorValues(
+ Sensors.at(i),
+ MQTT::MQTTIterator<float>(SignalConfiguration.MQTTTopic),
+ MQTT::MQTTIterator<float>()) break;
+ }
i++;
}
//
// Start simulation.
//
AppCCAM->simulate(AppConfig.NumberOfSimulationCycles);
return 0;
}
diff --git a/apps/ccam/configuration.h b/apps/ccam/configuration.h
index f66f04c..3058baa 100644
--- a/apps/ccam/configuration.h
+++ b/apps/ccam/configuration.h
@@ -1,87 +1,97 @@
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
// clang-tidy off
// clang-format off
#include "nlohmann/json.hpp"
// clang-format on
// clang-tidy on
#include "rosa/config/version.h"
#include "rosa/app/Application.hpp"
#include <fstream>
using namespace rosa;
using nlohmann::json;
+enum DataInterfaceTypes { CSV, MQTT };
+
struct SignalConfiguration {
std::string Name;
std::string InputPath;
+ std::string MQTTTopic;
+ DataInterfaceTypes DataInterfaceType;
bool Output;
float InnerBound;
float OuterBound;
float InnerBoundDrift;
float OuterBoundDrift;
uint32_t SampleHistorySize;
uint32_t DABSize;
uint32_t DABHistorySize;
};
struct AppConfiguration {
std::string OutputFilePath;
uint32_t BrokenCounter;
uint32_t NumberOfSimulationCycles;
uint32_t DownsamplingRate;
std::vector<SignalConfiguration> SignalConfigurations;
};
void from_json(const json &J, SignalConfiguration &SC) {
J.at("Name").get_to(SC.Name);
- J.at("InputPath").get_to(SC.InputPath);
+ if (J.contains("InputPath")) {
+ J.at("InputPath").get_to(SC.InputPath);
+ SC.DataInterfaceType = DataInterfaceTypes::CSV;
+ } else if (J.contains("MQTTTopic")) {
+ J.at("MQTTTopic").get_to(SC.MQTTTopic);
+ SC.DataInterfaceType = DataInterfaceTypes::MQTT;
+ }
J.at("Output").get_to(SC.Output);
J.at("InnerBound").get_to(SC.InnerBound);
J.at("OuterBound").get_to(SC.OuterBound);
J.at("InnerBoundDrift").get_to(SC.InnerBoundDrift);
J.at("OuterBoundDrift").get_to(SC.OuterBoundDrift);
J.at("SampleHistorySize").get_to(SC.SampleHistorySize);
J.at("DABSize").get_to(SC.DABSize);
J.at("DABHistorySize").get_to(SC.DABHistorySize);
}
void from_json(const json &J, AppConfiguration &AC) {
J.at("OutputFilePath").get_to(AC.OutputFilePath);
J.at("BrokenCounter").get_to(AC.BrokenCounter);
J.at("NumberOfSimulationCycles").get_to(AC.NumberOfSimulationCycles);
J.at("DownsamplingRate").get_to(AC.DownsamplingRate);
J.at("SignalConfigurations").get_to(AC.SignalConfigurations);
}
AppConfiguration AppConfig;
bool readConfigFile(std::string ConfigPath) {
LOG_INFO("READING CONFIG FILE");
LOG_INFO_STREAM << "Looking for config file at \"" << ConfigPath << "\"\n";
std::ifstream ConfigFile;
ConfigFile.open(ConfigPath);
if (!ConfigFile) {
LOG_ERROR("Unable to open config file");
return false;
}
json ConfigObj;
ConfigFile >> ConfigObj;
LOG_INFO_STREAM << "Read JSON file as \"" << ConfigObj << "\"\n";
try {
ConfigObj.get_to(AppConfig);
} catch (nlohmann::detail::type_error ex) {
LOG_ERROR("Misformatted Config File");
return false;
}
return true;
}
#endif // CONFIGURATION_H
diff --git a/apps/ccam/statehandlerutils.h b/apps/ccam/statehandlerutils.h
index 3542842..4d87142 100644
--- a/apps/ccam/statehandlerutils.h
+++ b/apps/ccam/statehandlerutils.h
@@ -1,229 +1,274 @@
#ifndef STATEHANDLERUTILS_H
#define STATEHANDLERUTILS_H
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Confidence.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include <functional>
#include <iostream>
#include <tuple>
#include <vector>
#include "rosa/config/version.h"
#include "rosa/agent/SignalStateDetector.hpp"
#include "rosa/agent/SystemStateDetector.hpp"
#include "rosa/app/Application.hpp"
#include "rosa/support/csv/CSVReader.hpp"
#include "rosa/support/csv/CSVWriter.hpp"
#include <fstream>
#include <limits>
#include <memory>
#include <streambuf>
using namespace rosa;
using namespace rosa::agent;
using namespace rosa::app;
using namespace rosa::terminal;
// For the convinience to write a shorter data type name
using SignalStateTuple =
AppTuple<float, uint32_t, uint8_t, float, float, float, float, float, float,
uint8_t, uint32_t, uint8_t>;
AgentHandle createSignalStateDetectorAgent(
std::unique_ptr<Application> &C, const std::string &Name,
std::shared_ptr<
SignalStateDetector<float, float, float, HistoryPolicy::FIFO>>
SigSD) {
using Input = std::pair<AppTuple<float>, bool>;
using Result = Optional<SignalStateTuple>;
using Handler = std::function<Result(Input)>;
return C->createAgent(
Name, Handler([&, Name, SigSD](Input I) -> Result {
LOG_INFO_STREAM << "\n******\n"
<< Name << " " << (I.second ? "<New>" : "<Old>")
<< " value: "
<< std::get<0>(
static_cast<std::tuple<float> &>(I.first))
<< "\n******\n";
auto StateInfo = SigSD->detectSignalState(
std::get<0>(static_cast<std::tuple<float> &>(I.first)));
if (I.second) {
SignalStateTuple Res = {
std::get<0>(static_cast<std::tuple<float> &>(I.first)),
StateInfo.StateID,
StateInfo.SignalProperty,
StateInfo.ConfidenceOfMatchingState,
StateInfo.ConfidenceOfMismatchingState,
StateInfo.ConfidenceStateIsValid,
StateInfo.ConfidenceStateIsInvalid,
StateInfo.ConfidenceStateIsStable,
StateInfo.ConfidenceStateIsDrifting,
StateInfo.StateCondition,
StateInfo.NumberOfInsertedSamplesAfterEntrance,
static_cast<uint8_t>(
(StateInfo.StateIsValid ? 4 : 0) +
(StateInfo.StateJustGotValid ? 2 : 0) +
(StateInfo.StateIsValidAfterReentrance ? 1 : 0))};
return Result(Res);
}
return Result();
}));
}
// System State
using SystemStateTuple = AppTuple<std::string>;
template <std::size_t size, typename ret, typename functype, typename... A>
struct Handler_helper;
template <typename B, typename func, typename A, typename... As>
struct function_helper {
static_assert(std::conjunction_v<std::is_same<A, As>...>,
"All types need to be identical");
static B function(A valA, As... valAs) {
std::vector<A> ar({valA, valAs...});
return func()(ar);
}
};
template <typename ret, typename typeA, typename functype, typename... B>
struct Handler_helper<0, ret, functype, typeA, B...> {
using handler = function_helper<ret, functype, B...>;
};
template <std::size_t size, typename ret, typename typeA, typename functype,
typename... B>
struct Handler_helper<size, ret, functype, typeA, B...> {
using handler =
typename Handler_helper<size - 1, ret, functype, typeA,
std::pair<typeA, bool>, B...>::handler;
};
template <std::size_t size, typename ret, typename functype, typename typeA>
using Handler = typename Handler_helper<size, ret, functype, typeA>::handler;
// TODO: Change it from global to local variable if possible
std::shared_ptr<
SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO>>
SysSD;
template <typename ret, typename A> struct function {
ret operator()(A a) {
std::vector<SignalStateInformation<float>> SignalStateInfos;
std::stringstream OutString;
for (auto _SignalStateTuple : a) {
// convert tuple to info struct out.push_back({});
OutString << std::get<0>(_SignalStateTuple.first) << ",";
SignalStateInformation<float> Info;
Info.StateID = std::get<1>(_SignalStateTuple.first);
Info.SignalProperty =
static_cast<SignalProperties>(std::get<2>(_SignalStateTuple.first));
Info.ConfidenceOfMatchingState = std::get<3>(_SignalStateTuple.first);
Info.ConfidenceOfMismatchingState = std::get<4>(_SignalStateTuple.first);
Info.ConfidenceStateIsValid = std::get<5>(_SignalStateTuple.first);
Info.ConfidenceStateIsInvalid = std::get<6>(_SignalStateTuple.first);
Info.ConfidenceStateIsStable = std::get<7>(_SignalStateTuple.first);
Info.ConfidenceStateIsDrifting = std::get<8>(_SignalStateTuple.first);
Info.StateCondition =
static_cast<StateConditions>(std::get<9>(_SignalStateTuple.first));
Info.NumberOfInsertedSamplesAfterEntrance =
std::get<10>(_SignalStateTuple.first);
Info.StateIsValid = (std::get<11>(_SignalStateTuple.first) & 4) > 0;
Info.StateJustGotValid = (std::get<11>(_SignalStateTuple.first) & 2) > 0;
Info.StateIsValidAfterReentrance =
(std::get<11>(_SignalStateTuple.first) & 1) > 0;
SignalStateInfos.push_back(Info);
}
SystemStateInformation<float> SystemStateInfo =
SysSD->detectSystemState(SignalStateInfos);
OutString << SystemStateInfo.StateID << ",";
OutString << SystemStateInfo.ConfidenceStateIsValid << ",";
OutString << SystemStateInfo.ConfidenceStateIsInvalid << ",";
OutString << SystemStateInfo.ConfidenceOfInputsMatchingState << ",";
OutString << SystemStateInfo.ConfidenceOfInputsMismatchingState << ",";
OutString << SystemStateInfo.ConfidenceOfOutputsMatchingState << ",";
OutString << SystemStateInfo.ConfidenceOfOutputsMismatchingState << ",";
OutString << SystemStateInfo.StateCondition << ",";
OutString << SystemStateInfo.ConfidenceSystemIsFunctioning << ",";
OutString << SystemStateInfo.ConfidenceSystemIsMalfunctioning << ",";
OutString << SystemStateInfo.ConfidenceOfAllDecisions << ",";
return ret(std::make_tuple<std::string>(OutString.str()));
}
};
using arr = std::vector<std::pair<SignalStateTuple, bool>>;
template <size_t NumOfSlaves>
AgentHandle createSystemStateDetectorAgent(
std::unique_ptr<Application> &C, const std::string &Name,
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction,
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction) {
LOG_TRACE("Creating fixed SystemStateDetectorAgent");
using Input = SignalStateTuple;
using Result = Optional<SystemStateTuple>;
std::shared_ptr<
SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO>>
_SysSD(
new SystemStateDetector<uint32_t, float, float, HistoryPolicy::FIFO>(
std::numeric_limits<uint32_t>::max(), NumOfSlaves,
BrokenDelayFunction, OkDelayFunction));
SysSD = _SysSD;
auto HandlerFunction =
Handler<NumOfSlaves, Result, function<Optional<SystemStateTuple>, arr>,
Input>::function;
return C->createAgent(Name, std::function(HandlerFunction));
}
AgentHandle createSystemStateDetectorAgent(
std::unique_ptr<Application> &C, const std::string &Name,
size_t NumOfSlaves,
std::shared_ptr<PartialFunction<uint32_t, float>> BrokenDelayFunction,
std::shared_ptr<PartialFunction<uint32_t, float>> OkDelayFunction) {
LOG_TRACE("Creating dynamic SystemStateDetectorAgent");
switch (NumOfSlaves) {
// clang-format off
case 2: return createSystemStateDetectorAgent< 2>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 3: return createSystemStateDetectorAgent< 3>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 4: return createSystemStateDetectorAgent< 4>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 5: return createSystemStateDetectorAgent< 5>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 6: return createSystemStateDetectorAgent< 6>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 7: return createSystemStateDetectorAgent< 7>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 8: return createSystemStateDetectorAgent< 8>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 9: return createSystemStateDetectorAgent< 9>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 10: return createSystemStateDetectorAgent<10>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 11: return createSystemStateDetectorAgent<11>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 12: return createSystemStateDetectorAgent<12>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 13: return createSystemStateDetectorAgent<13>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 14: return createSystemStateDetectorAgent<14>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 15: return createSystemStateDetectorAgent<15>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 16: return createSystemStateDetectorAgent<16>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 17: return createSystemStateDetectorAgent<17>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 18: return createSystemStateDetectorAgent<18>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 19: return createSystemStateDetectorAgent<19>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 20: return createSystemStateDetectorAgent<20>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 21: return createSystemStateDetectorAgent<21>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 22: return createSystemStateDetectorAgent<22>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 23: return createSystemStateDetectorAgent<23>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 24: return createSystemStateDetectorAgent<24>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 25: return createSystemStateDetectorAgent<25>(C, Name, BrokenDelayFunction, OkDelayFunction);
case 1:
default: return createSystemStateDetectorAgent<1>(C, Name, BrokenDelayFunction, OkDelayFunction);
// clang-format on
}
}
+
+template <typename T, typename>
+AgentHandle createMQTTSensor(std::string MQTTTopic) {
+
+ using Input = void;
+
+ using Result = Optional<T>;
+ using Handler = std::function<Result(Input)>;
+
+ return C->createAgent(
+ Name, Handler([&, Name, SigSD](Input I) -> Result {
+ LOG_INFO_STREAM << "\n******\n"
+ << Name << " " << (I.second ? "<New>" : "<Old>")
+ << " value: "
+ << std::get<0>(
+ static_cast<std::tuple<float> &>(I.first))
+ << "\n******\n";
+
+ auto StateInfo = SigSD->detectSignalState(
+ std::get<0>(static_cast<std::tuple<float> &>(I.first)));
+
+ if (I.second) {
+ SignalStateTuple Res = {
+ std::get<0>(static_cast<std::tuple<float> &>(I.first)),
+ StateInfo.StateID,
+ StateInfo.SignalProperty,
+ StateInfo.ConfidenceOfMatchingState,
+ StateInfo.ConfidenceOfMismatchingState,
+ StateInfo.ConfidenceStateIsValid,
+ StateInfo.ConfidenceStateIsInvalid,
+ StateInfo.ConfidenceStateIsStable,
+ StateInfo.ConfidenceStateIsDrifting,
+ StateInfo.StateCondition,
+ StateInfo.NumberOfInsertedSamplesAfterEntrance,
+ static_cast<uint8_t>(
+ (StateInfo.StateIsValid ? 4 : 0) +
+ (StateInfo.StateJustGotValid ? 2 : 0) +
+ (StateInfo.StateIsValidAfterReentrance ? 1 : 0))};
+
+ return Result(Res);
+ }
+ return Result();
+ }));
+}
+
#endif // STATEHANDLERUTILS_H
diff --git a/include/rosa/agent/SignalState.hpp b/include/rosa/agent/SignalState.hpp
index 5ba84b4..76b4d8e 100644
--- a/include/rosa/agent/SignalState.hpp
+++ b/include/rosa/agent/SignalState.hpp
@@ -1,647 +1,649 @@
//===-- rosa/agent/SignalState.hpp ------------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SignalState.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *signal state* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SIGNALSTATE_HPP
#define ROSA_AGENT_SIGNALSTATE_HPP
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/History.hpp"
#include "rosa/agent/State.hpp"
#include "rosa/support/math.hpp"
namespace rosa {
namespace agent {
/// Signal properties defining the properties of the signal which is monitored
/// by \c rosa::agent::SignalStateDetector and is saved in \c
/// rosa::agent::SignalStateInformation.
enum SignalProperties : uint8_t {
INPUT = 0, ///< The signal is an input signal
OUTPUT = 1 ///< The signal is an output signal
};
/// TODO: write description
template <typename CONFDATATYPE>
struct SignalStateInformation : StateInformation<CONFDATATYPE> {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence type is not to arithmetic");
/// ConfidenceOfMatchingState is the confidence how good the new sample
/// matches the state.
CONFDATATYPE ConfidenceOfMatchingState;
/// ConfidenceOfMatchingState is the confidence how bad the new sample
/// matches the state.
CONFDATATYPE ConfidenceOfMismatchingState;
/// The SignalProperty saves whether the monitored signal is an input our
/// output signal.
SignalProperties SignalProperty;
/// The SignalStateIsValid saves the number of samples which have been
/// inserted into the state after entering it.
uint32_t NumberOfInsertedSamplesAfterEntrance;
public:
SignalStateInformation(unsigned int SignalStateID,
SignalProperties _SignalProperty) {
this->StateID = SignalStateID;
this->SignalProperty = _SignalProperty;
this->StateCondition = StateConditions::UNKNOWN;
this->NumberOfInsertedSamplesAfterEntrance = 0;
this->StateIsValid = false;
this->StateJustGotValid = false;
this->StateIsValidAfterReentrance = false;
this->ConfidenceStateIsValid = 0;
this->ConfidenceStateIsInvalid = 0;
this->ConfidenceStateIsStable = 0;
this->ConfidenceStateIsDrifting = 0;
}
SignalStateInformation() = default;
};
/// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of
/// data in that the confidence values are given, \tparam PROCDATATYPE type of
/// the relative distance and the type of data in which DABs are saved.
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE>
class SignalState : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence data type is not to arithmetic");
STATIC_ASSERT(
(std::is_arithmetic<PROCDATATYPE>::value),
"process data type (DAB and Relative Distance) is not to arithmetic");
public:
// For the convinience to write a shorter data type name
using PartFuncReference = PartialFunction<INDATATYPE, CONFDATATYPE> &;
// using PartFuncReference2 = ;
using StepFuncReference = StepFunction<INDATATYPE, CONFDATATYPE> &;
private:
/// SignalStateInfo is a struct of SignalStateInformation that contains
/// information about the current signal state.
SignalStateInformation<CONFDATATYPE> SignalStateInfo;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMatches;
/// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMismatches;
/// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
StepFuncReference FuzzyFunctionNumOfSamplesMatches;
/// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
/// the confidence how many samples from the sampe history mismatch the new
/// sample.
StepFuncReference FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSampleValid is the fuzzy function that gives the
/// confidence how good one matches another sample in the sample
/// history. This is done to evaluate whether a state is valid.
PartFuncReference FuzzyFunctionSampleValid;
/// The FuzzyFunctionSampleInvalid is the fuzzy function that gives the
/// confidence how bad one sample matches another sample in the sample
/// history. This is done to evaluate whether a state is invalid.
PartFuncReference FuzzyFunctionSampleInvalid;
/// The FuzzyFunctionNumOfSamplesValid is the fuzzy function that gives the
/// confidence how many samples from the sample history match another sample.
/// This is done to evaluate whether a state is valid.
StepFuncReference FuzzyFunctionNumOfSamplesValid;
/// The FuzzyFunctionNumOfSamplesInvalid is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch another
/// sample. This is done to evaluate whether a state is invalid.
StepFuncReference FuzzyFunctionNumOfSamplesInvalid;
/// The FuzzyFunctionSignalIsDrifting is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting.
PartFuncReference FuzzyFunctionSignalIsDrifting;
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is stable (not drifting).
PartFuncReference FuzzyFunctionSignalIsStable;
/// TODO: description
- PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionLookBack;
+ // PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionLookBack;
/// TODO: description
- PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionHistoryDesicion;
+ // PartialFunction<uint32_t, float>
+ // &FuzzyFunctionSignalConditionHistoryDesicion;
/// TODO: description
- uint32_t DriftLookbackRange;
+ // uint32_t DriftLookbackRange;
/// SampleHistory is a history in that the last sample values are stored.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO> SampleHistory;
/// DAB is a (usually) small history of the last sample values of which a
/// average is calculated if the DAB is full.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::SRWF> DAB;
/// DABHistory is a history in that the last DABs (to be exact, the averages
/// of the last DABs) are stored.
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::LIFO> DABHistory;
/// LowestConfidenceMatchingHistory is a history in that the lowest confidence
/// for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
LowestConfidenceMatchingHistory;
/// HighestConfidenceMatchingHistory is a history in that the highest
/// confidence for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
HighestConfidenceMismatchingHistory;
/// TempConfidenceMatching is the confidence how good a sample matches the
/// state. However, the value of this variable is only needed temporarly.
CONFDATATYPE TempConfidenceMatching = 0;
/// TempConfidenceMatching is the confidence how bad a sample matches the
/// state. However, the value of this variable is only needed temporarly.
CONFDATATYPE TempConfidenceMismatching = 0;
public:
/// Creates an instance by setting all parameters
/// \param SignalStateID The Id of the SignalStateinfo \c
/// SignalStateInformation.
///
/// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
/// fuzzy function that gives the confidence how good the new sample matches
/// another sample in the sample history.
///
/// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
/// the fuzzy function that gives the confidence how bad the new sample
/// matches another sample in the sample history.
///
/// \param FuzzyFunctionNumOfSamplesMatches The
/// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
///
/// \param FuzzyFunctionNumOfSamplesMismatches The
/// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history mismatch the new
/// sample.
///
/// \param FuzzyFunctionSignalIsDrifting The FuzzyFunctionSignalIsDrifting is
/// the fuzzy function that gives the confidence how likely it is that the
/// signal (resp. the state of a signal) is drifting.
///
/// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
/// fuzzy function that gives the confidence how likely it is that the signal
/// (resp. the state of a signal) is stable (not drifting).
///
/// \param SampleHistorySize Size of the Sample History \c
/// DynamicLengthHistory . SampleHistory is a history in that the last sample
/// values are stored.
///
/// \param DABSize Size of DAB \c DynamicLengthHistory . DAB is a (usually)
/// small history of the last sample values of which a average is calculated
/// if the DAB is full.
///
/// \param DABHistorySize Size of the DABHistory \c DynamicLengthHistory .
/// DABHistory is a history in that the last DABs (to be exact, the averages
/// of the last DABs) are stored.
///
SignalState(
uint32_t SignalStateID, SignalProperties SignalProperty,
uint32_t SampleHistorySize, uint32_t DABSize, uint32_t DABHistorySize,
PartFuncReference FuzzyFunctionSampleMatches,
PartFuncReference FuzzyFunctionSampleMismatches,
StepFuncReference FuzzyFunctionNumOfSamplesMatches,
StepFuncReference FuzzyFunctionNumOfSamplesMismatches,
PartFuncReference FuzzyFunctionSampleValid,
PartFuncReference FuzzyFunctionSampleInvalid,
StepFuncReference FuzzyFunctionNumOfSamplesValid,
StepFuncReference FuzzyFunctionNumOfSamplesInvalid,
PartFuncReference FuzzyFunctionSignalIsDrifting,
- PartFuncReference FuzzyFunctionSignalIsStable,
- PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionLookBack,
- PartialFunction<uint32_t, float>
- &FuzzyFunctionSignalConditionHistoryDesicion,
- uint32_t DriftLookbackRange) noexcept
+ PartFuncReference FuzzyFunctionSignalIsStable //,
+ // PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionLookBack,
+ // PartialFunction<uint32_t, float>
+ // &FuzzyFunctionSignalConditionHistoryDesicion,
+ // uint32_t DriftLookbackRange
+ ) noexcept
: SignalStateInfo{SignalStateID, SignalProperty},
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSampleValid(FuzzyFunctionSampleValid),
FuzzyFunctionSampleInvalid(FuzzyFunctionSampleInvalid),
FuzzyFunctionNumOfSamplesValid(FuzzyFunctionNumOfSamplesValid),
FuzzyFunctionNumOfSamplesInvalid(FuzzyFunctionNumOfSamplesInvalid),
FuzzyFunctionSignalIsDrifting(FuzzyFunctionSignalIsDrifting),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable),
- FuzzyFunctionSignalConditionLookBack(
- FuzzyFunctionSignalConditionLookBack),
- FuzzyFunctionSignalConditionHistoryDesicion(
- FuzzyFunctionSignalConditionHistoryDesicion),
- DriftLookbackRange(DriftLookbackRange),
+ // FuzzyFunctionSignalConditionLookBack(
+ // FuzzyFunctionSignalConditionLookBack),
+ // FuzzyFunctionSignalConditionHistoryDesicion(
+ // FuzzyFunctionSignalConditionHistoryDesicion),
+ // DriftLookbackRange(DriftLookbackRange),
SampleHistory(SampleHistorySize), DAB(DABSize),
DABHistory(DABHistorySize),
LowestConfidenceMatchingHistory(SampleHistorySize),
HighestConfidenceMismatchingHistory(SampleHistorySize) {}
/// Destroys \p this object.
~SignalState(void) = default;
void leaveSignalState(void) noexcept {
DAB.clear();
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance = 0;
SignalStateInfo.StateIsValidAfterReentrance = false;
}
SignalStateInformation<CONFDATATYPE>
insertSample(INDATATYPE Sample) noexcept {
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance++;
validateSignalState(Sample);
SampleHistory.addEntry(Sample);
DAB.addEntry(Sample);
if (DAB.full()) {
// Experiment -> exchanged next line with the folowings
// PROCDATATYPE AvgOfDAB = DAB.template average<PROCDATATYPE>();
// TODO: make soring inside of median
// TODO: make better outlier removal!
std::sort(DAB.begin(), DAB.end());
// DAB.erase(DAB.begin(), DAB.begin() + 1);
// DAB.erase(DAB.end() - 1, DAB.end());
// PROCDATATYPE AvgOfDAB = DAB.template median<PROCDATATYPE>();
PROCDATATYPE AvgOfDAB = DAB.template average<PROCDATATYPE>();
DABHistory.addEntry(AvgOfDAB);
DAB.clear();
}
FuzzyFunctionNumOfSamplesMatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
FuzzyFunctionNumOfSamplesMismatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
checkSignalStability();
SignalStateInfo.ConfidenceOfMatchingState = TempConfidenceMatching;
SignalStateInfo.ConfidenceOfMismatchingState = TempConfidenceMismatching;
return SignalStateInfo;
}
/// Gives the confidence how likely the new sample matches the signal state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is matching the signal state.
CONFDATATYPE
confidenceSampleMatchesSignalState(INDATATYPE Sample) noexcept {
CONFDATATYPE ConfidenceOfBestCase = 0;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// Calculate distances to all history samples.
for (auto &HistorySample : SampleHistory) {
PROCDATATYPE RelativeDistance =
relativeDistance<INDATATYPE, PROCDATATYPE>(Sample, HistorySample);
RelativeDistanceHistory.addEntry(RelativeDistance);
}
// Sort all calculated distances so that the lowest distance (will get the
// highest confidence) is at the beginning.
RelativeDistanceHistory.sortAscending();
CONFDATATYPE ConfidenceOfWorstFittingSample = 1;
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
// TODO (future): to accelerate . don't start with 1 start with some higher
// number because a low number (i guess lower than 5) will definetely lead
// to a low confidence. except the history is not full.
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
// TODO (future): if fuzzy is defined in a way that infinity is not 0 it
// would be a problem.
ConfidenceFromRelativeDistance = 0;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfWorstFittingSample = fuzzyAND(ConfidenceOfWorstFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfBestCase =
fuzzyOR(ConfidenceOfBestCase,
fuzzyAND(ConfidenceOfWorstFittingSample,
FuzzyFunctionNumOfSamplesMatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
TempConfidenceMatching = ConfidenceOfBestCase;
return ConfidenceOfBestCase;
}
/// Gives the confidence how likely the new sample mismatches the signal
/// state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is mismatching the signal state.
CONFDATATYPE
confidenceSampleMismatchesSignalState(INDATATYPE Sample) noexcept {
float ConfidenceOfWorstCase = 1;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// Calculate distances to all history samples.
for (auto &HistorySample : SampleHistory) {
RelativeDistanceHistory.addEntry(
relativeDistance<INDATATYPE, PROCDATATYPE>(Sample, HistorySample));
}
// Sort all calculated distances so that the highest distance (will get the
// lowest confidence) is at the beginning.
RelativeDistanceHistory.sortDescending();
CONFDATATYPE ConfidenceOfBestFittingSample = 0;
// TODO (future): to accelerate -> don't go until end. Confidences will only
// get higher. See comment in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)".
// Case 1 means that one (the worst fitting) sample of the history is
// compared with the new sample. Case 2 means the two worst history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
ConfidenceFromRelativeDistance = 1;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMismatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfBestFittingSample = fuzzyOR(ConfidenceOfBestFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfWorstCase =
fuzzyAND(ConfidenceOfWorstCase,
fuzzyOR(ConfidenceOfBestFittingSample,
FuzzyFunctionNumOfSamplesMismatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
TempConfidenceMismatching = ConfidenceOfWorstCase;
return ConfidenceOfWorstCase;
}
/// Gives information about the current signal state.
///
/// \return a struct SignalStateInformation that contains information about
/// the current signal state.
SignalStateInformation<CONFDATATYPE> signalStateInformation(void) noexcept {
return SignalStateInfo;
}
private:
void validateSignalState(INDATATYPE Sample) {
// TODO (future): WorstConfidenceDistance and BestConfidenceDistance could
// be set already in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)" and "CONFDATATYPE
// confidenceSampleMismatchesSignalState(INDATATYPE Sample)" when the new
// sample is compared to all history samples. This would save a lot time
// because the comparisons are done only once. However, it has to be asured
// that the these two functions are called before the insertation, and the
// FuzzyFunctions for validation and matching have to be the same!
CONFDATATYPE LowestConfidenceMatching = 1;
CONFDATATYPE HighestConfidenceMismatching = 0;
for (auto &HistorySample : SampleHistory) {
// TODO (future): think about using different fuzzy functions for
// validation and matching.
LowestConfidenceMatching = fuzzyAND(
LowestConfidenceMatching,
FuzzyFunctionSampleMatches(relativeDistance<INDATATYPE, PROCDATATYPE>(
Sample, HistorySample)));
HighestConfidenceMismatching =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionSampleMismatches(
relativeDistance<INDATATYPE, PROCDATATYPE>(
Sample, HistorySample)));
}
LowestConfidenceMatchingHistory.addEntry(LowestConfidenceMatching);
HighestConfidenceMismatchingHistory.addEntry(HighestConfidenceMismatching);
LowestConfidenceMatching = LowestConfidenceMatchingHistory.lowestEntry();
HighestConfidenceMismatching =
HighestConfidenceMismatchingHistory.highestEntry();
SignalStateInfo.ConfidenceStateIsValid =
fuzzyAND(LowestConfidenceMatching,
FuzzyFunctionNumOfSamplesValid(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
SignalStateInfo.ConfidenceStateIsInvalid =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionNumOfSamplesInvalid(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
if (SignalStateInfo.ConfidenceStateIsValid >
SignalStateInfo.ConfidenceStateIsInvalid) {
if (SignalStateInfo.StateIsValid) {
SignalStateInfo.StateJustGotValid = false;
} else {
SignalStateInfo.StateJustGotValid = true;
}
SignalStateInfo.StateIsValid = true;
SignalStateInfo.StateIsValidAfterReentrance = true;
}
}
void checkSignalStability(void) {
/*
std::cout << "LookbackTest: " << std::endl;
for (unsigned int t = 1; t <= DriftLookbackRange + 5; t++) {
std::cout << "t=" << t
<< " -> c=" << FuzzyFunctionSignalConditionLookBack(t)
<< std::endl;
//(*FuzzyFunctionTimeSystemFunctioning)(
// static_cast<INDATATYPE>(TimeOfDisparity));
}
getchar();
*/
SignalStateInfo.ConfidenceStateIsStable = 0;
SignalStateInfo.ConfidenceStateIsDrifting = 0;
/*
std::cout << "ConfidenceStateIsStable (before): "
<< SignalStateInfo.ConfidenceStateIsStable << std::endl;
std::cout << "ConfidenceStateIsDrifting (before): "
<< SignalStateInfo.ConfidenceStateIsDrifting << std::endl;
*/
if (DABHistory.numberOfEntries() >= 2) {
+ /*
+ // EXPERIMENTING
+ for (unsigned int t = 1;
+ t <= DriftLookbackRange && t < DABHistory.numberOfEntries();
+ t++) {
+
+ // AND
+
+ SignalStateInfo.ConfidenceStateIsStable = fuzzyOR(
+ SignalStateInfo.ConfidenceStateIsStable,
+ fuzzyAND(
+ FuzzyFunctionSignalIsStable(
+ relativeDistance<INDATATYPE, PROCDATATYPE>(
+ DABHistory[DABHistory.numberOfEntries() - 1],
+ DABHistory[DABHistory.numberOfEntries() - (t +
+ 1)])), FuzzyFunctionSignalConditionLookBack(t)));
+
+ SignalStateInfo.ConfidenceStateIsDrifting = fuzzyOR(
+ SignalStateInfo.ConfidenceStateIsDrifting,
+ fuzzyAND(
+ FuzzyFunctionSignalIsDrifting(
+ relativeDistance<INDATATYPE, PROCDATATYPE>(
+ DABHistory[DABHistory.numberOfEntries() - 1],
+ DABHistory[DABHistory.numberOfEntries() - (t +
+ 1)])), FuzzyFunctionSignalConditionLookBack(t))); */
- // EXPERIMENTING
- for (unsigned int t = 1;
- t <= DriftLookbackRange && t < DABHistory.numberOfEntries(); t++) {
-
- // AND
-
- SignalStateInfo.ConfidenceStateIsStable = fuzzyOR(
- SignalStateInfo.ConfidenceStateIsStable,
- fuzzyAND(
- FuzzyFunctionSignalIsStable(
- relativeDistance<INDATATYPE, PROCDATATYPE>(
- DABHistory[DABHistory.numberOfEntries() - 1],
- DABHistory[DABHistory.numberOfEntries() - (t + 1)])),
- FuzzyFunctionSignalConditionLookBack(t)));
-
- SignalStateInfo.ConfidenceStateIsDrifting = fuzzyOR(
- SignalStateInfo.ConfidenceStateIsDrifting,
- fuzzyAND(
- FuzzyFunctionSignalIsDrifting(
- relativeDistance<INDATATYPE, PROCDATATYPE>(
- DABHistory[DABHistory.numberOfEntries() - 1],
- DABHistory[DABHistory.numberOfEntries() - (t + 1)])),
- FuzzyFunctionSignalConditionLookBack(t)));
-
- /*
- std::cout
- << "t=" << t
- << ", DABact=" << DABHistory[DABHistory.numberOfEntries() -
- 1]
- << ", DAB_t-" << t << "="
- << DABHistory[DABHistory.numberOfEntries() - (t + 1)]
- << " / FuzzyStb="
- << FuzzyFunctionSignalIsStable(
- relativeDistance<INDATATYPE, PROCDATATYPE>(
- DABHistory[DABHistory.numberOfEntries() - 1],
- DABHistory[DABHistory.numberOfEntries() - (t +
- 1)]))
- << ", FuzzyDft="
- << FuzzyFunctionSignalIsDrifting(
- relativeDistance<INDATATYPE, PROCDATATYPE>(
- DABHistory[DABHistory.numberOfEntries() - 1],
- DABHistory[DABHistory.numberOfEntries() - (t +
- 1)]))
- << ", FuzzyLB=" << FuzzyFunctionSignalConditionLookBack(t)
- << std::endl;
- */
- // MULTI
- /*
- SignalStateInfo.ConfidenceStateIsStable = fuzzyOR(
- SignalStateInfo.ConfidenceStateIsStable,
- FuzzyFunctionSignalIsStable(
- relativeDistance<INDATATYPE, PROCDATATYPE>(
- DABHistory[DABHistory.numberOfEntries() - 1],
- DABHistory[DABHistory.numberOfEntries() - (t + 1)]))
- * FuzzyFunctionSignalConditionLookBack(t));
-
- SignalStateInfo.ConfidenceStateIsDrifting = fuzzyOR(
- SignalStateInfo.ConfidenceStateIsDrifting,
- FuzzyFunctionSignalIsDrifting(
- relativeDistance<INDATATYPE, PROCDATATYPE>(
- DABHistory[DABHistory.numberOfEntries() - 1],
- DABHistory[DABHistory.numberOfEntries() - (t + 1)]))
- * FuzzyFunctionSignalConditionLookBack(t));
- */
- // std::cout << "t = " << t << ", HistLength = " <<
- // DABHistory.numberOfEntries() << std::endl;
- }
+ /*
+ std::cout
+ << "t=" << t
+ << ", DABact=" << DABHistory[DABHistory.numberOfEntries() -
+ 1]
+ << ", DAB_t-" << t << "="
+ << DABHistory[DABHistory.numberOfEntries() - (t + 1)]
+ << " / FuzzyStb="
+ << FuzzyFunctionSignalIsStable(
+ relativeDistance<INDATATYPE, PROCDATATYPE>(
+ DABHistory[DABHistory.numberOfEntries() - 1],
+ DABHistory[DABHistory.numberOfEntries() - (t +
+ 1)]))
+ << ", FuzzyDft="
+ << FuzzyFunctionSignalIsDrifting(
+ relativeDistance<INDATATYPE, PROCDATATYPE>(
+ DABHistory[DABHistory.numberOfEntries() - 1],
+ DABHistory[DABHistory.numberOfEntries() - (t +
+ 1)]))
+ << ", FuzzyLB=" << FuzzyFunctionSignalConditionLookBack(t)
+ << std::endl;
+ */
+ // MULTI
+ /*
+ SignalStateInfo.ConfidenceStateIsStable = fuzzyOR(
+ SignalStateInfo.ConfidenceStateIsStable,
+ FuzzyFunctionSignalIsStable(
+ relativeDistance<INDATATYPE, PROCDATATYPE>(
+ DABHistory[DABHistory.numberOfEntries() - 1],
+ DABHistory[DABHistory.numberOfEntries() - (t + 1)]))
+ * FuzzyFunctionSignalConditionLookBack(t));
+
+ SignalStateInfo.ConfidenceStateIsDrifting = fuzzyOR(
+ SignalStateInfo.ConfidenceStateIsDrifting,
+ FuzzyFunctionSignalIsDrifting(
+ relativeDistance<INDATATYPE, PROCDATATYPE>(
+ DABHistory[DABHistory.numberOfEntries() - 1],
+ DABHistory[DABHistory.numberOfEntries() - (t + 1)]))
+ * FuzzyFunctionSignalConditionLookBack(t));
+ */
+ // std::cout << "t = " << t << ", HistLength = " <<
+ // DABHistory.numberOfEntries() << std::endl;
+ //}
// EXPERIMENTING -> following outcommented block was the published code
- /*
+
SignalStateInfo.ConfidenceStateIsStable = FuzzyFunctionSignalIsStable(
relativeDistance<INDATATYPE, PROCDATATYPE>(
DABHistory[DABHistory.numberOfEntries() - 1], DABHistory[0]));
SignalStateInfo.ConfidenceStateIsDrifting = FuzzyFunctionSignalIsDrifting(
relativeDistance<INDATATYPE, PROCDATATYPE>(
DABHistory[DABHistory.numberOfEntries() - 1], DABHistory[0]));
- */
}
/*
std::cout << "ConfidenceStateIsStable (after): "
<< SignalStateInfo.ConfidenceStateIsStable << std::endl;
std::cout << "ConfidenceStateIsDrifting (after): "
<< SignalStateInfo.ConfidenceStateIsDrifting << std::endl;
*/
/*
else {
// Initializing the following variables because (at this moment) we do not
// know if the signal is stable or drifting.
SignalStateInfo.ConfidenceStateIsStable = 0;
SignalStateInfo.ConfidenceStateIsDrifting = 0;
}
*/
if (SignalStateInfo.ConfidenceStateIsStable >
SignalStateInfo.ConfidenceStateIsDrifting) {
SignalStateInfo.StateCondition = StateConditions::STABLE;
} else if (SignalStateInfo.ConfidenceStateIsStable <
SignalStateInfo.ConfidenceStateIsDrifting) {
SignalStateInfo.StateCondition = StateConditions::DRIFTING;
} else {
SignalStateInfo.StateCondition = StateConditions::UNKNOWN;
/*
if (SignalStateInfo.ConfidenceStateIsStable != 0)
getchar();
*/
}
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATE_HPP
diff --git a/include/rosa/agent/SignalStateDetector.hpp b/include/rosa/agent/SignalStateDetector.hpp
index 320b69c..8a7d3c1 100644
--- a/include/rosa/agent/SignalStateDetector.hpp
+++ b/include/rosa/agent/SignalStateDetector.hpp
@@ -1,330 +1,332 @@
//===-- rosa/agent/SignalStateDetector.hpp ----------------------*- C++ -*-===//
//
// The RoSA Framework
//
// Distributed under the terms and conditions of the Boost Software License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SignalStateDetector.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *signal state detector* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
#define ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
#include "rosa/agent/Functionality.h"
#include "rosa/agent/SignalState.hpp"
#include "rosa/agent/StateDetector.hpp"
#include <vector>
namespace rosa {
namespace agent {
/// Implements \c rosa::agent::SignalStateDetector as a functionality that
/// detects signal states given on input samples.
///
/// \note This implementation is supposed to be used for samples of an
/// arithmetic type.
///
/// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of
/// data in that the confidence values are given, \tparam PROCDATATYPE type of
/// the relative distance and the type of data in which DABs are saved.
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE,
HistoryPolicy HP>
class SignalStateDetector
: public StateDetector<INDATATYPE, CONFDATATYPE, PROCDATATYPE, HP> {
using StateDetector =
StateDetector<INDATATYPE, CONFDATATYPE, PROCDATATYPE, HP>;
using PartFuncPointer = typename StateDetector::PartFuncPointer;
using StepFuncPointer = typename StateDetector::StepFuncPointer;
private:
// For the convinience to write a shorter data type name
using SignalStatePtr =
std::shared_ptr<SignalState<INDATATYPE, CONFDATATYPE, PROCDATATYPE>>;
/// The SignalProperty saves whether the monitored signal is an input our
/// output signal.
SignalProperties SignalProperty;
/// The CurrentSignalState is a pointer to the (saved) signal state in which
/// the actual variable (signal) of the observed system is.
SignalStatePtr CurrentSignalState;
/// The DetectedSignalStates is a history in that all detected signal states
/// are saved.
DynamicLengthHistory<SignalStatePtr, HP> DetectedSignalStates;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history. This is done to evaluate whether one sample belongs to an
/// existing state.
PartFuncPointer FuzzyFunctionSampleMatches;
/// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history. This is done to evaluate whether one sample does not belong to an
/// existing state.
PartFuncPointer FuzzyFunctionSampleMismatches;
/// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sample history match the new sample.
/// This is done to evaluate whether one sample belongs to an existing state.
StepFuncPointer FuzzyFunctionNumOfSamplesMatches;
/// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch the new
/// sample. This is done to evaluate whether one sample does not belong to an
/// existing state.
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSampleValid is the fuzzy function that gives the
/// confidence how good one matches another sample in the sample
/// history. This is done to evaluate whether a state is valid.
PartFuncPointer FuzzyFunctionSampleValid;
/// The FuzzyFunctionSampleInvalid is the fuzzy function that gives the
/// confidence how bad one sample matches another sample in the sample
/// history. This is done to evaluate whether a state is invalid.
PartFuncPointer FuzzyFunctionSampleInvalid;
/// The FuzzyFunctionNumOfSamplesValid is the fuzzy function that gives the
/// confidence how many samples from the sample history match another sample.
/// This is done to evaluate whether a state is valid.
StepFuncPointer FuzzyFunctionNumOfSamplesValid;
/// The FuzzyFunctionNumOfSamplesInvalid is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch another
/// sample. This is done to evaluate whether a state is invalid.
StepFuncPointer FuzzyFunctionNumOfSamplesInvalid;
/// The FuzzyFunctionSignalIsDrifting is the fuzzy function that gives the
/// confidence how likely it is that the signal is drifting.
PartFuncPointer FuzzyFunctionSignalIsDrifting;
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal is stable (not drifting).
PartFuncPointer FuzzyFunctionSignalIsStable;
/// TODO: describe
std::shared_ptr<PartialFunction<uint32_t, float>>
FuzzyFunctionSignalConditionLookBack;
/// TODO: describe
std::shared_ptr<PartialFunction<uint32_t, float>>
FuzzyFunctionSignalConditionHistoryDesicion;
/// TODO: describe
uint32_t DriftLookbackRange;
/// SampleHistorySize is the (maximum) size of the sample history.
uint32_t SampleHistorySize;
/// DABSize the size of a DAB (Discrete Average Block).
uint32_t DABSize;
/// DABHistorySize is the (maximum) size of the DAB history.
uint32_t DABHistorySize;
public:
/// Creates an instance by setting all parameters
/// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
/// fuzzy function that gives the confidence how good the new sample matches
/// another sample in the sample history.
///
/// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
/// the fuzzy function that gives the confidence how bad the new sample
/// matches another sample in the sample history.
///
/// \param FuzzyFunctionNumOfSamplesMatches The
/// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
///
/// \param FuzzyFunctionNumOfSamplesMismatches The
/// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history mismatch the new
/// sample.
///
/// \param FuzzyFunctionSignalIsDrifting The FuzzyFunctionSignalIsDrifting is
/// the fuzzy function that gives the confidence how likely it is that the
/// signal (resp. the state of a signal) is drifting.
///
/// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
/// fuzzy function that gives the confidence how likely it is that the signal
/// (resp. the state of a signal) is stable (not drifting).
///
/// \param SampleHistorySize Sets the History size which will be used by \c
/// SignalState.
///
/// \param DABSize Sets the DAB size which will be used by \c SignalState.
///
/// \param DABHistorySize Sets the size which will be used by \c SignalState.
///
SignalStateDetector(SignalProperties SignalProperty,
uint32_t MaximumNumberOfSignalStates,
PartFuncPointer FuzzyFunctionSampleMatches,
PartFuncPointer FuzzyFunctionSampleMismatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches,
PartFuncPointer FuzzyFunctionSampleValid,
PartFuncPointer FuzzyFunctionSampleInvalid,
StepFuncPointer FuzzyFunctionNumOfSamplesValid,
StepFuncPointer FuzzyFunctionNumOfSamplesInvalid,
PartFuncPointer FuzzyFunctionSignalIsDrifting,
PartFuncPointer FuzzyFunctionSignalIsStable,
- std::shared_ptr<PartialFunction<uint32_t, float>>
- FuzzyFunctionSignalConditionLookBack,
- std::shared_ptr<PartialFunction<uint32_t, float>>
- FuzzyFunctionSignalConditionHistoryDesicion,
- uint32_t DriftLookbackRange, uint32_t SampleHistorySize,
- uint32_t DABSize, uint32_t DABHistorySize) noexcept
+ // std::shared_ptr<PartialFunction<uint32_t, float>>
+ // FuzzyFunctionSignalConditionLookBack,
+ // std::shared_ptr<PartialFunction<uint32_t, float>>
+ // FuzzyFunctionSignalConditionHistoryDesicion,
+ // uint32_t DriftLookbackRange,
+ uint32_t SampleHistorySize, uint32_t DABSize,
+ uint32_t DABHistorySize) noexcept
: SignalProperty(SignalProperty), CurrentSignalState(nullptr),
DetectedSignalStates(MaximumNumberOfSignalStates),
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSampleValid(FuzzyFunctionSampleValid),
FuzzyFunctionSampleInvalid(FuzzyFunctionSampleInvalid),
FuzzyFunctionNumOfSamplesValid(FuzzyFunctionNumOfSamplesValid),
FuzzyFunctionNumOfSamplesInvalid(FuzzyFunctionNumOfSamplesInvalid),
FuzzyFunctionSignalIsDrifting(FuzzyFunctionSignalIsDrifting),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable),
- FuzzyFunctionSignalConditionLookBack(
- FuzzyFunctionSignalConditionLookBack),
- FuzzyFunctionSignalConditionHistoryDesicion(
- FuzzyFunctionSignalConditionHistoryDesicion),
- DriftLookbackRange(DriftLookbackRange),
+ // FuzzyFunctionSignalConditionLookBack(
+ // FuzzyFunctionSignalConditionLookBack),
+ // FuzzyFunctionSignalConditionHistoryDesicion(
+ // FuzzyFunctionSignalConditionHistoryDesicion),
+ // DriftLookbackRange(DriftLookbackRange),
SampleHistorySize(SampleHistorySize), DABSize(DABSize),
DABHistorySize(DABHistorySize) {
this->NextStateID = 1;
this->StateHasChanged = false;
}
/// Destroys \p this object.
~SignalStateDetector(void) = default;
/// Detects the signal state to which the new sample belongs or create a new
/// signal state if the new sample does not match to any of the saved states.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the information of the current signal state (signal state ID and
/// other parameters).
// TODO (future): change this function to an operator()-function
SignalStateInformation<CONFDATATYPE>
detectSignalState(INDATATYPE Sample) noexcept {
if (!CurrentSignalState) {
ASSERT(DetectedSignalStates.empty());
SignalStatePtr S = createNewSignalState();
CurrentSignalState = S;
} else {
// TODO (future): maybe there is a better way than a relative distance
// comparison. Maybe somehow a mix of relative and absolute?
CONFDATATYPE ConfidenceSampleMatchesSignalState =
CurrentSignalState->confidenceSampleMatchesSignalState(Sample);
CONFDATATYPE ConfidenceSampleMismatchesSignalState =
CurrentSignalState->confidenceSampleMismatchesSignalState(Sample);
this->StateHasChanged = ConfidenceSampleMatchesSignalState <=
ConfidenceSampleMismatchesSignalState;
if (this->StateHasChanged) {
if (CurrentSignalState->signalStateInformation().StateIsValid)
CurrentSignalState->leaveSignalState();
else
DetectedSignalStates.deleteEntry(CurrentSignalState);
// TODO (future): additionally save averages to enable fast iteration
// through recorded signl state history (maybe sort vector based on
// these average values)
CurrentSignalState = nullptr;
for (auto &SavedSignalState : DetectedSignalStates) {
ConfidenceSampleMatchesSignalState =
SavedSignalState->confidenceSampleMatchesSignalState(Sample);
ConfidenceSampleMismatchesSignalState =
SavedSignalState->confidenceSampleMismatchesSignalState(Sample);
if (ConfidenceSampleMatchesSignalState >
ConfidenceSampleMismatchesSignalState) {
// TODO (future): maybe it would be better to compare
// ConfidenceSampleMatchesSignalState of all signal states in the
// vector in order to find the best matching signal state.
CurrentSignalState = SavedSignalState;
break;
}
}
if (!CurrentSignalState) {
SignalStatePtr S = createNewSignalState();
CurrentSignalState = S;
}
}
}
SignalStateInformation<CONFDATATYPE> SignalStateInfo =
CurrentSignalState->insertSample(Sample);
if (SignalStateInfo.StateJustGotValid) {
this->NextStateID++;
}
return SignalStateInfo;
}
/// Gives information about the current signal state.
///
/// \return a struct SignalStateInformation that contains information about
/// the current signal state or NULL if no current signal state exists.
SignalStateInformation<CONFDATATYPE>
currentSignalStateInformation(void) noexcept {
if (CurrentSignalState) {
return CurrentSignalState->signalStateInformation();
} else {
return NULL;
}
}
/// Gives information whether a signal state change has happened or not.
///
/// \return true if a signal state change has happened, and false if not.
bool stateHasChanged(void) noexcept { return this->StateHasChanged; }
private:
/// Creates a new signal state and adds it to the signal state vector in which
/// all known states are saved.
///
/// \return a pointer to the newly created signal state or NULL if no state
/// could be created.
SignalStatePtr createNewSignalState(void) noexcept {
SignalStatePtr S(new SignalState<INDATATYPE, CONFDATATYPE, PROCDATATYPE>(
this->NextStateID, SignalProperty, SampleHistorySize, DABSize,
DABHistorySize, *FuzzyFunctionSampleMatches,
*FuzzyFunctionSampleMismatches, *FuzzyFunctionNumOfSamplesMatches,
*FuzzyFunctionNumOfSamplesMismatches, *FuzzyFunctionSampleValid,
*FuzzyFunctionSampleInvalid, *FuzzyFunctionNumOfSamplesValid,
*FuzzyFunctionNumOfSamplesInvalid, *FuzzyFunctionSignalIsDrifting,
- *FuzzyFunctionSignalIsStable, *FuzzyFunctionSignalConditionLookBack,
- *FuzzyFunctionSignalConditionHistoryDesicion, DriftLookbackRange));
+ *FuzzyFunctionSignalIsStable //, *FuzzyFunctionSignalConditionLookBack,
+ //*FuzzyFunctionSignalConditionHistoryDesicion, DriftLookbackRange
+ ));
DetectedSignalStates.addEntry(S);
return S;
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
diff --git a/include/rosa/agent/State.hpp b/include/rosa/agent/State.hpp
index 68c9e15..12512ff 100644
--- a/include/rosa/agent/State.hpp
+++ b/include/rosa/agent/State.hpp
@@ -1,100 +1,100 @@
//===-- rosa/agent/State.hpp ------------------------------------*- C++ -*-===//
//
// The RoSA Framework
//
// Distributed under the terms and conditions of the Boost Software License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/State.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *state* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_STATE_HPP
#define ROSA_AGENT_STATE_HPP
#include "rosa/agent/Functionality.h"
//#include "rosa/agent/FunctionAbstractions.hpp"
//#include "rosa/agent/History.hpp"
#include "rosa/support/debug.hpp"
#include <stdint.h>
//#include <vector>
namespace rosa {
namespace agent {
/// State conditions defining how the condition of a \c rosa::agent::State is
/// saved in \c rosa::agent::StateInformation.
-enum StateConditions : char {
+enum StateConditions : uint8_t {
/*
UNKNOWN = 0, ///< The state is unknown
STABLE = 1, ///< The state is stable
DRIFTING_UP = 2, ///< The state is drifting up
DRIFTING_DN = 3, ///< The state is drifting down
MALFUNCTIONING = 4 ///< Malfunction
*/
UNKNOWN = 0, ///< The state is unknown
STABLE = 1, ///< The state is stable
DRIFTING = 2, ///< The state is drifting
MALFUNCTIONING = 3 ///< Malfunction
};
template <typename CONFDATATYPE> struct StateInformation {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence type is not to arithmetic");
/// The StateID stores the ID of the state.
unsigned int StateID;
/// The StateCondition shows the condition of a state (stable, drifting, or
/// unknown)
StateConditions StateCondition;
/// The StateIsValid shows whether a state is valid or invalid. In this
/// context, valid means that enough samples which are in close proximitry
/// have been inserted into the state.
bool StateIsValid;
/// The StateJustGotValid shows whether a state got valid (toggled from
/// invalid to valid) during the current inserted sample.
bool StateJustGotValid;
/// The StateIsValidAfterReentrance shows whether a state is valid after the
/// variable changed back to it again.
bool StateIsValidAfterReentrance;
/// TODO: describe
CONFDATATYPE ConfidenceStateIsValid;
CONFDATATYPE ConfidenceStateIsInvalid;
CONFDATATYPE ConfidenceStateIsStable;
CONFDATATYPE ConfidenceStateIsDrifting;
};
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE>
class State : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence abstraction type is not to arithmetic");
STATIC_ASSERT((std::is_arithmetic<PROCDATATYPE>::value),
"process type is not to arithmetic");
protected:
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
diff --git a/include/rosa/support/mqtt/MQTTReader.hpp b/include/rosa/support/mqtt/MQTTReader.hpp
new file mode 100644
index 0000000..92c900f
--- /dev/null
+++ b/include/rosa/support/mqtt/MQTTReader.hpp
@@ -0,0 +1,270 @@
+//===-- rosa/support/MQTT/MQTTReader.hpp --------------------------*- C++ -*-===//
+//
+// The RoSA Framework
+//
+// Distributed under the terms and conditions of the Boost Software License 1.0.
+// See accompanying file LICENSE.
+//
+// If you did not receive a copy of the license file, see
+// http://www.boost.org/LICENSE_1_0.txt.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file rosa/support/MQTT/MQTTReader.hpp
+///
+/// \authors Benedikt Tutzer (benedikt.tutzer@tuwien.ac.at),
+/// Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
+///
+/// \date 2020
+///
+/// \brief Facitilities to read from MQTT brokers.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef ROSA_SUPPORT_MQTT_MQTTREADER_HPP
+#define ROSA_SUPPORT_MQTT_MQTTREADER_HPP
+
+#include "rosa/support/debug.hpp"
+#include "rosa/support/sequence.hpp"
+#include "mqtt/async_client.h"
+
+#include <algorithm>
+#include <iostream>
+#include <map>
+#include <set>
+#include <sstream>
+#include <vector>
+#include <thread>
+
+#include <queue>
+
+namespace rosa {
+namespace MQTT {
+
+
+// @TODO this is a copy of CSVReader.hpp. Move this functionalities to common file
+/// Anonymous namespace providing implementation details for
+/// \c rosa::csv::CSVIterator, consider it private.
+namespace {
+
+/// Provides facility for parsing one value from a string.
+///
+/// \tparam T type of value to parse
+/// \tparam IsSignedInt if \p T is a signed integral type, always use default
+/// \tparam IsUnsignedInt if \p T is an unsigned integral type, always use
+/// default
+/// \tparam IsFloat if \p T is a floating-point type, always use default
+/// \tparam IsString if \p T is \c std::string, always use default
+///
+/// \note Specializations of this struct are provided for arithmentic types
+/// and \c std::string.
+template <typename T,
+ bool IsSignedInt =
+ (std::is_integral<T>::value && std::is_signed<T>::value),
+ bool IsUnsignedInt =
+ (std::is_integral<T>::value && std::is_unsigned<T>::value),
+ bool IsFloat = std::is_floating_point<T>::value,
+ bool IsString = std::is_same<T, std::string>::value>
+struct ValueParser {
+
+ ///
+ ///
+ /// \param Cell the \c std::string to parse
+ ///
+ /// \return the parsed value
+ ///
+ /// \note The function silently fails if cannot parse \p Cell for type \p T.
+ static T parse(const std::string &Cell) noexcept;
+};
+
+template <typename T> struct ValueParser<T, true, false, false, false> {
+ STATIC_ASSERT((std::is_integral<T>::value && std::is_signed<T>::value),
+ "wrong type"); // Sanity check.
+ static T parse(const std::string &Cell) noexcept {
+ return static_cast<T>(std::stoll(Cell));
+ }
+};
+
+template <typename T> struct ValueParser<T, false, true, false, false> {
+ STATIC_ASSERT((std::is_integral<T>::value && std::is_unsigned<T>::value),
+ "wrong type"); // Sanity check.
+ static T parse(const std::string &Cell) noexcept {
+ return static_cast<T>(std::stoull(Cell));
+ }
+};
+
+template <typename T> struct ValueParser<T, false, false, true, false> {
+ STATIC_ASSERT((std::is_floating_point<T>::value),
+ "wrong type"); // Sanity check.
+ static T parse(const std::string &Cell) noexcept {
+ return static_cast<T>(std::stold(Cell));
+ }
+};
+
+template <typename T> struct ValueParser<T, false, false, false, true> {
+ STATIC_ASSERT((std::is_same<T, std::string>::value),
+ "wrong type"); // Sanity check.
+ static T parse(const std::string &Cell) noexcept { return Cell; }
+};
+
+} // End namespace
+
+/// Provides `InputIterator` features for iterating over a MQTT file.
+///
+/// The iterator parses rows into `std::tuple` values and iterates over the
+/// file row by row.
+///
+/// \tparam T type of values stored in one row of the MQTT file
+///
+/// \note The iterator expects each row to consists of fields matching \p Ts.
+///
+/// \note The implementation relies on \c rosa::MQTT::MQTTRow, which in turn
+/// relies on \c rosa::MQTT::MQTTRowParser, which is implemented only for
+/// `arithmetic` types -- signed and unsigned integral types and floating-point
+/// types -- and for \c std::string. Those are the valid values for \p Ts
+template <typename T> class MQTTIterator : public virtual mqtt::callback {
+public:
+ /// \defgroup MQTTIteratorTypedefs Typedefs of rosa::MQTT::MQTTIterator
+ ///
+ /// Standard `typedef`s for iterators.
+ ///
+ ///@{
+ typedef std::input_iterator_tag
+ iterator_category; ///< Category of the iterator.
+ typedef T value_type; ///< Type of values iterated over.
+ typedef std::size_t difference_type; ///< Type to identify distance.
+ typedef T *pointer; ///< Pointer to the type iterated over.
+ typedef T &reference; ///< Reference to the type iterated over.
+ ///@}
+
+
+ /// Creates a new instance.
+ ///
+ /// \param [in,out] S input stream to iterate over
+ /// \param SkipRows the number of rows you want to skip only once at
+ /// the beginning of the file.
+ /// If you have an header in the file, it is supposed to be
+ /// the first row, and it will be always read out. But after
+ /// this header the next number of Rows will be skipped.
+ /// \param HeaderInfo is used to know wheter the file contains an
+ /// header row or not.
+ /// The header has to be in the first row.
+ /// \param Delimiter is the separator between the differnt values of
+ /// the MQTT file.
+ MQTTIterator(std::string &MQTTTopic, std::string ServerHost = "localhost", uint16_t ServerPort = 1883, size_t TimeoutSecs = 60) {
+ this->MQTTTopic = MQTTTopic;
+ this->ServerHost = ServerHost;
+ this->ServerPort = ServerPort;
+ this->TimeoutSecs = TimeoutSecs;
+ //connect and register callback
+ try {
+ std::stringstream ss;
+ ss << "tcp://" << ServerHost << ":" << ServerPort;
+ const std::string ServerURI = ss.str();
+ LOG_INFO_STREAM << "Initializing for " << ServerURI << std::endl;
+ mqtt::async_client Client(ServerURI, "");
+
+ LOG_INFO_STREAM << "Connecting to server" << std::endl;
+ Client.connect()->wait();
+ LOG_INFO_STREAM << "Receiving messages from topic '" << Topic
+ << "' for a short while..." << std::endl;
+ Client.set_callback(this);
+ Client.subscribe(this->MQTTTopic, {});
+
+ //@todo move to destructor
+ //Client.disconnect()->wait();
+
+ } catch (const mqtt::exception &e) {
+ logErrorAndExit(e.what(), 1);
+ }
+ }
+
+ /// Creates an empty new instance.
+ MQTTIterator(void) noexcept {}
+
+ /// Pre-increment operator.
+ ///
+ /// The implementation reads the next row. If the end of the input stream is
+ /// reached, the operator becomes empty and has no further effect.
+ ///
+ /// \return \p this object after incrementing it.
+ MQTTIterator &operator++() {
+ buffer.pop_front();
+ return *this;
+ }
+
+ /// Post-increment operator.
+ ///
+ /// The implementation uses the pre-increment operator and returns a copy of
+ /// the original state of \p this object.
+ ///
+ /// \return \p this object before incrementing it.
+ MQTTIterator operator++(int) {
+ MQTTIterator Tmp(*this);
+ ++(*this);
+ return Tmp;
+ }
+
+ /// Returns a constant reference to the current entry.
+ ///
+ /// \note Should not dereference the iterator when it is empty.
+ ///
+ /// \return constant reference to the current entry.
+ const T &operator*(void)const noexcept { return buffer.front() }
+
+ /// Returns a constant pointer to the current entry.
+ ///
+ /// \note Should not dereference the iterator when it is empty.
+ ///
+ /// \return constant pointer to the current entry.
+ const T *operator->(void)const noexcept {
+ return &(buffer.front());
+ }
+
+ /// Tells if \p this object is equal to another one.
+ ///
+ /// Two \c rosa::MQTT::MQTTIterator instances are equal if and only if they are
+ /// the same or both are empty.
+ ///
+ /// \param RHS other object to compare to
+ ///
+ /// \return whether \p this object is equal with \p RHS
+ bool operator==(const MQTTIterator &RHS) const noexcept {
+ return ((this == &RHS) || ((this->buffer.empty()) && (RHS.buffer.empty())));
+ }
+
+ /// Tells if \p this object is not equal to another one.
+ ///
+ /// \see rosa::MQTT::MQTTIterator::operator==
+ ///
+ /// \param RHS other object to compare to
+ ///
+ /// \return whether \p this object is not equal with \p RHS.
+ bool operator!=(const MQTTIterator &RHS) const noexcept {
+ return !((*this) == RHS);
+ }
+
+ /** Callback for when a message arrives.
+ * @param Msg Pointer for the MQTT message
+ **/
+ void message_arrived(mqtt::const_message_ptr Msg) override {
+ std::string Topic = Msg->get_topic();
+ std::string Message = Msg->to_string();
+ LOG_INFO_STREAM << "[Message @ " << Topic << "] " << Message << std::endl;
+ //@todo convert and enqueue value
+ buffer.push_back(parser.parse(Message));
+ }
+
+private:
+ std::string ServerHost;
+ uint16_t ServerPort;
+ type_t TimeoutSecs;
+ std::string MQTTTopic;
+ std::queue<T> buffer;
+ ValueParser<T> parser;
+};
+
+} // End namespace MQTT
+} // End namespace rosa
+
+#endif // ROSA_SUPPORT_MQTT_MQTTREADER_HPP
diff --git a/include/rosa/support/mqtt/namespace.h b/include/rosa/support/mqtt/namespace.h
new file mode 100644
index 0000000..b293c3f
--- /dev/null
+++ b/include/rosa/support/mqtt/namespace.h
@@ -0,0 +1,31 @@
+//===-- rosa/support/csv/namespace.h ----------------------------*- C++ -*-===//
+//
+// The RoSA Framework
+//
+// Distributed under the terms and conditions of the Boost Software License 1.0.
+// See accompanying file LICENSE.
+//
+// If you did not receive a copy of the license file, see
+// http://www.boost.org/LICENSE_1_0.txt.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file rosa/support/mqtt/namespace.h
+///
+/// \author Benedikt Tutzer (benedikt.tutzer@tuwien.ac.at)
+///
+/// \date 2020
+///
+/// \brief Documentation for the namespace \c rosa::mqtt.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef ROSA_SUPPORT_MQTT_NAMESPACE_H
+#define ROSA_SUPPORT_MQTT_NAMESPACE_H
+
+namespace rosa {
+/// Provides facilities to work with mqtt brokers.
+namespace mqtt {}
+} // End namespace rosa
+
+#endif // ROSA_SUPPORT_MQTT_NAMESPACE_H
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Thu, Jul 3, 2:07 AM (1 d, 11 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
157177
Default Alt Text
(98 KB)
Attached To
Mode
R20 SoC_Rosa_repo
Attached
Detach File
Event Timeline
Log In to Comment