Page Menu
Home
Phorge
Search
Configure Global Search
Log In
Files
F386412
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Size
39 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/include/rosa/agent/Abstraction.hpp b/include/rosa/agent/Abstraction.hpp
index 6afa7fd..a39ee4a 100644
--- a/include/rosa/agent/Abstraction.hpp
+++ b/include/rosa/agent/Abstraction.hpp
@@ -1,244 +1,244 @@
//===-- rosa/agent/Abstraction.hpp ------------------------------*- C++ -*-===//
//
// The RoSA Framework
//
// Distributed under the terms and conditions of the Boost Software License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/Abstraction.hpp
///
/// \author David Juhasz (david.juhasz@tuwien.ac.at)
///
/// \date 2017
///
/// \brief Definition of *abstraction* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_ABSTRACTION_HPP
#define ROSA_AGENT_ABSTRACTION_HPP
#include "rosa/agent/Functionality.h"
#include "rosa/support/debug.hpp"
#include <algorithm>
#include <map>
namespace rosa {
namespace agent {
/// Abstracts values from a type to another one.
///
/// \tparam T type to abstract from
/// \tparam A type to abstract to
template <typename T, typename A> class Abstraction : public Functionality {
protected:
/// Value to abstract to by default.
const A Default;
public:
/// Creates an instance.
///
/// \param Default value to abstract to by default
Abstraction(const A Default) noexcept : Default(Default) {}
/// Destroys \p this object.
~Abstraction(void) = default;
/// Checks wether the Abstraction evaluates to default at the given position
///
/// \param V the value at which to check if the function falls back to it's
/// default value.
/// \return true, the default implementation always falls back to the default
/// value
virtual bool isDefaultAt(const T &V) const noexcept{
(void)V;
return true;
}
/// Abstracts a value from type \p T to type \p A.
///
/// \note The default implementation always returns
/// \c rosa::agent::Abstraction::Default, hence the actual argument is
/// ignored.
///
/// \return the abstracted value
virtual A operator()(const T &) const noexcept { return Default; }
};
/// Implements \c rosa::agent::Abstraction as a \c std::map from a type to
/// another one.
///
/// \note This implementation is supposed to be used to abstract between
/// enumeration types, which is statically enforced.
///
/// \tparam T type to abstract from
/// \tparam A type to abstract to
template <typename T, typename A>
class MapAbstraction : public Abstraction<T, A>, private std::map<T, A> {
// Make sure the actual type arguments are enumerations.
STATIC_ASSERT((std::is_enum<T>::value && std::is_enum<A>::value),
"mapping not enumerations");
// Bringing into scope inherited members.
using Abstraction<T, A>::Default;
using std::map<T, A>::end;
using std::map<T, A>::find;
public:
/// Creates an instance by initializing the underlying \c std::map.
///
/// \param Map the mapping to do abstraction according to
/// \param Default value to abstract to by default
MapAbstraction(const std::map<T, A> &Map, const A Default) noexcept
: Abstraction<T, A>(Default),
std::map<T, A>(Map) {}
/// Destroys \p this object.
~MapAbstraction(void) = default;
/// Checks wether the Abstraction evaluates to default at the given position
///
/// \param V the value at which to check if the function falls back to it's
/// default value.
/// \return true if the Abstraction falls back to the default value
bool isDefaultAt(const T &V) const noexcept override {
const auto I = find(V);
return I == end() ? true : false;
}
/// Abstracts a value from type \p T to type \p A based on the set mapping.
///
/// Results in the value associated by the set mapping to the argument, or
/// \c rosa::agent::MapAbstraction::Default if the actual argument is not
/// associated with anything by the set mapping.
///
/// \param V value to abstract
///
/// \return the abstracted value based on the set mapping
A operator()(const T &V) const noexcept override {
const auto I = find(V);
return I == end() ? Default : *I;
}
};
/// Implements \c rosa::agent::Abstraction as a \c std::map from ranges of a
/// type to values of another type.
///
/// \note This implementation is supposed to be used to abstract ranges of
/// arithmetic types into enumerations, which is statically enforced.
///
/// \invariant The keys in the underlying \c std::map define valid ranges
/// such that `first <= second` and there are no overlapping ranges defined by
/// the keys.
///
/// \tparam T type to abstract from
/// \tparam A type to abstract to
template <typename T, typename A>
class RangeAbstraction : public Abstraction<T, A>,
private std::map<std::pair<T, T>, A> {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<T>::value), "abstracting not arithmetic");
/// \todo check if this compiles with the definition of abstractions as
/// self-aware properties
//STATIC_ASSERT((std::is_enum<A>::value), "abstracting not to enumeration");
// Bringing into scope inherited members.
using Abstraction<T, A>::Default;
using std::map<std::pair<T, T>, A>::begin;
using std::map<std::pair<T, T>, A>::end;
using std::map<std::pair<T, T>, A>::find;
public:
/// Creates an instance by Initializing the unserlying \c std::map.
///
/// \param Map the mapping to do abstraction according to
/// \param Default value to abstract to by default
///
/// \pre Each key defines a valid range such that `first <= second` and
/// there are no overlapping ranges defined by the keys.
RangeAbstraction(const std::map<std::pair<T, T>, A> &Map, const A &Default)
: Abstraction<T, A>(Default), std::map<std::pair<T, T>, A>(Map) {
// Sanity check.
ASSERT(std::all_of(
begin(), end(), [this](const std::pair<std::pair<T, T>, A> &P) {
return P.first.first <= P.first.second &&
std::all_of(++find(P.first), end(),
[&P](const std::pair<std::pair<T, T>, A> &R) {
// \note Values in \c Map are sorted.
- return P.first.first < P.first.second &&
+ return P.first.first <= P.first.second &&
P.first.second <= R.first.first ||
P.first.first == P.first.second &&
- P.first.second < R.first.first;
+ P.first.second <= R.first.first;
});
}));
}
/// Destroys \p this object.
~RangeAbstraction(void) = default;
/// Checks wether the Abstraction evaluates to default at the given position
///
/// \param V the value at which to check if the function falls back to it's
/// default value.
/// \return true if the Abstraction falls back to the default value
bool isDefaultAt(const T &V) const noexcept override {
auto I = begin();
bool Found = false; // Indicates if \c I refers to a matching range.
bool Failed = false; // Indicates if it is pointless to continue searching.
while (!Found && !Failed && I != end()) {
if (V < I->first.first) {
// No match so far and \p V is below the next range, never will match.
// \note Keys are sorted in the map.
return true;
} else if (I->first.first <= V && V < I->first.second) {
// Matching range found.
return false;
} else {
// Cannot conclude in this step, move to the next range.
++I;
}
}
return true;
}
/// Abstracts a value from type \p T to type \p A based on the set mapping.
///
/// Results in the value associated by the set mapping to the argument, or
/// \c rosa::agent::RangeAbstraction::Default if the actual argument is not
/// included in any of the ranges in the set mapping.
///
/// \param V value to abstract
///
/// \return the abstracted value based on the set mapping
A operator()(const T &V) const noexcept override {
auto I = begin();
bool Found = false; // Indicates if \c I refers to a matching range.
bool Failed = false; // Indicates if it is pointless to continue searching.
while (!Found && !Failed && I != end()) {
if (V < I->first.first) {
// No match so far and \p V is below the next range, never will match.
// \note Keys are sorted in the map.
Failed = true;
} else if (I->first.first <= V && V < I->first.second) {
// Matching range found.
Found = true;
} else {
// Cannot conclude in this step, move to the next range.
++I;
}
}
ASSERT(!Found || I != end());
return Found ? I->second : Default;
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_ABSTRACTION_HPP
diff --git a/include/rosa/agent/SignalState.hpp b/include/rosa/agent/SignalState.hpp
index 2b2595e..1ea6b6a 100644
--- a/include/rosa/agent/SignalState.hpp
+++ b/include/rosa/agent/SignalState.hpp
@@ -1,688 +1,638 @@
//===-- rosa/agent/SignalState.hpp ------------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SignalState.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *signal state* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SIGNALSTATE_HPP
#define ROSA_AGENT_SIGNALSTATE_HPP
#include "rosa/agent/DistanceMetrics.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/History.hpp"
#include "rosa/agent/State.hpp"
#include "rosa/support/math.hpp"
namespace rosa {
namespace agent {
/// Signal properties defining the properties of the signal which is monitored
/// by \c rosa::agent::SignalStateDetector and is saved in \c
/// rosa::agent::SignalStateInformation.
enum SignalProperties : uint8_t {
INPUT = 0, ///< The signal is an input signal
OUTPUT = 1 ///< The signal is an output signal
};
/// TODO: write description
template <typename PROCDATATYPE, typename CONFDATATYPE> struct DABHistoryEntry {
/// TODO: write description
PROCDATATYPE AvgValue;
/// TODO: write description
CONFDATATYPE DecisionDABIsStable;
/// TODO: write description
CONFDATATYPE DecisionDABIsDriftingDown;
/// TODO: write description
CONFDATATYPE DecisionDABIsDriftingUp;
/// TODO: write description
bool DABIsCurrent;
public:
DABHistoryEntry(PROCDATATYPE AvgValue) {
this->AvgValue = AvgValue;
this->DecisionDABIsStable = 1;
this->DecisionDABIsDriftingDown = 0;
this->DecisionDABIsDriftingUp = 0;
this->DABIsCurrent = true;
}
};
/// TODO: write description
template <typename CONFDATATYPE>
struct SignalStateInformation : StateInformation<CONFDATATYPE> {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence type is not to arithmetic");
/// ConfidenceOfMatchingState is the confidence how good the new sample
/// matches the state.
CONFDATATYPE ConfidenceOfMatchingState;
/// ConfidenceOfMatchingState is the confidence how bad the new sample
/// matches the state.
CONFDATATYPE ConfidenceOfMismatchingState;
/// The SignalProperty saves whether the monitored signal is an input our
/// output signal.
SignalProperties SignalProperty;
/// The SignalStateIsValid saves the number of samples which have been
/// inserted into the state after entering it.
uint32_t NumberOfInsertedSamplesAfterEntrance;
public:
SignalStateInformation(unsigned int SignalStateID,
SignalProperties _SignalProperty) {
this->StateID = SignalStateID;
this->SignalProperty = _SignalProperty;
this->StateCondition = StateConditions::UNKNOWN;
this->NumberOfInsertedSamplesAfterEntrance = 0;
this->StateIsValid = false;
this->StateJustGotValid = false;
this->StateIsValidAfterReentrance = false;
this->ConfidenceStateIsValid = 0;
this->ConfidenceStateIsInvalid = 0;
this->ConfidenceStateIsStable = 0;
this->ConfidenceStateIsDrifting = 0;
this->ConfidenceStateIsDriftingDown = 0;
this->ConfidenceStateIsDriftingUp = 0;
}
SignalStateInformation() = default;
};
/// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of
/// data in that the confidence values are given, \tparam PROCDATATYPE type of
/// the relative distance and the type of data in which DABs are saved.
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE>
class SignalState : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence data type is not to arithmetic");
STATIC_ASSERT(
(std::is_arithmetic<PROCDATATYPE>::value),
"process data type (DAB and Relative Distance) is not to arithmetic");
public:
// The metric to calculate the distance between two points
using DistanceMetricAbstraction =
Abstraction<std::pair<INDATATYPE, INDATATYPE>, PROCDATATYPE> &;
// For the convinience to write a shorter data type name
using PartFuncReference = PartialFunction<INDATATYPE, CONFDATATYPE> &;
// using PartFuncReference2 = ;
using StepFuncReference = StepFunction<INDATATYPE, CONFDATATYPE> &;
private:
/// SignalStateInfo is a struct of SignalStateInformation that contains
/// information about the current signal state.
SignalStateInformation<CONFDATATYPE> SignalStateInfo;
/// The metric to calculate the distance between two points
DistanceMetricAbstraction DistanceMetric;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMatches;
/// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMismatches;
/// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
StepFuncReference FuzzyFunctionNumOfSamplesMatches;
/// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
/// the confidence how many samples from the sampe history mismatch the new
/// sample.
StepFuncReference FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSampleValid is the fuzzy function that gives the
/// confidence how good one matches another sample in the sample
/// history. This is done to evaluate whether a state is valid.
PartFuncReference FuzzyFunctionSampleValid;
/// The FuzzyFunctionSampleInvalid is the fuzzy function that gives the
/// confidence how bad one sample matches another sample in the sample
/// history. This is done to evaluate whether a state is invalid.
PartFuncReference FuzzyFunctionSampleInvalid;
/// The FuzzyFunctionNumOfSamplesValid is the fuzzy function that gives the
/// confidence how many samples from the sample history match another sample.
/// This is done to evaluate whether a state is valid.
StepFuncReference FuzzyFunctionNumOfSamplesValid;
/// The FuzzyFunctionNumOfSamplesInvalid is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch another
/// sample. This is done to evaluate whether a state is invalid.
StepFuncReference FuzzyFunctionNumOfSamplesInvalid;
/// The FuzzyFunctionSignalIsDriftingDown is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting down.
PartFuncReference FuzzyFunctionSignalIsDriftingDown;
/// The FuzzyFunctionSignalIsDriftingUp is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting up.
PartFuncReference FuzzyFunctionSignalIsDriftingUp;
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is stable (not drifting).
PartFuncReference FuzzyFunctionSignalIsStable;
/// TODO: description
PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionLookBack;
/// TODO: description
PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionHistoryDesicion;
/// TODO: description
uint32_t DriftLookbackRange;
/// SampleHistory is a history in that the last sample values are stored.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO> SampleHistory;
/// DAB is a (usually) small history of the last sample values of which a
/// average is calculated if the DAB is full.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::SRWF> DAB;
/// DABHistory is a history in that the last DABs (to be exact, the averages
/// of the last DABs) are stored.
DynamicLengthHistory<DABHistoryEntry<PROCDATATYPE, CONFDATATYPE>,
HistoryPolicy::FIFO>
DABHistory;
/// LowestConfidenceMatchingHistory is a history in that the lowest confidence
/// for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
LowestConfidenceMatchingHistory;
/// HighestConfidenceMatchingHistory is a history in that the highest
/// confidence for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
HighestConfidenceMismatchingHistory;
/// TempConfidenceMatching is the confidence how good a sample matches the
/// state. However, the value of this variable is only needed temporarly.
CONFDATATYPE TempConfidenceMatching = 0;
/// TempConfidenceMatching is the confidence how bad a sample matches the
/// state. However, the value of this variable is only needed temporarly.
CONFDATATYPE TempConfidenceMismatching = 0;
+ /// For the linear regression
+ PROCDATATYPE MeanX;
+
+ /// For the linear regression
+ PROCDATATYPE RegressionDivisor;
+
public:
/// Creates an instance by setting all parameters
/// \param SignalStateID The Id of the SignalStateinfo \c
/// SignalStateInformation.
///
/// \param DistanceMetric the distance metric to calculate the distance
/// between two points
///
/// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
/// fuzzy function that gives the confidence how good the new sample matches
/// another sample in the sample history.
///
/// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
/// the fuzzy function that gives the confidence how bad the new sample
/// matches another sample in the sample history.
///
/// \param FuzzyFunctionNumOfSamplesMatches The
/// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
///
/// \param FuzzyFunctionNumOfSamplesMismatches The
/// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history mismatch the new
/// sample.
///
/// \param FuzzyFunctionSignalIsDriftingDown The
/// FuzzyFunctionSignalIsDriftingDown is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting down.
///
///
/// \param FuzzyFunctionSignalIsDriftingUp The FuzzyFunctionSignalIsDriftingUp
/// is the fuzzy function that gives the confidence how likely it is that the
/// signal (resp. the state of a signal) is drifting down.
///
/// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
/// fuzzy function that gives the confidence how likely it is that the signal
/// (resp. the state of a signal) is stable (not drifting).
///
/// \param SampleHistorySize Size of the Sample History \c
/// DynamicLengthHistory . SampleHistory is a history in that the last sample
/// values are stored.
///
SignalState(
uint32_t SignalStateID, SignalProperties SignalProperty,
uint32_t SampleHistorySize, uint32_t DABSize,
DistanceMetricAbstraction DistanceMetric,
PartFuncReference FuzzyFunctionSampleMatches,
PartFuncReference FuzzyFunctionSampleMismatches,
StepFuncReference FuzzyFunctionNumOfSamplesMatches,
StepFuncReference FuzzyFunctionNumOfSamplesMismatches,
PartFuncReference FuzzyFunctionSampleValid,
PartFuncReference FuzzyFunctionSampleInvalid,
StepFuncReference FuzzyFunctionNumOfSamplesValid,
StepFuncReference FuzzyFunctionNumOfSamplesInvalid,
PartFuncReference FuzzyFunctionSignalIsDriftingDown,
PartFuncReference FuzzyFunctionSignalIsDriftingUp,
PartFuncReference FuzzyFunctionSignalIsStable,
PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionLookBack,
PartialFunction<uint32_t, float>
&FuzzyFunctionSignalConditionHistoryDesicion,
uint32_t DriftLookbackRange) noexcept
: SignalStateInfo{SignalStateID, SignalProperty},
DistanceMetric(DistanceMetric),
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSampleValid(FuzzyFunctionSampleValid),
FuzzyFunctionSampleInvalid(FuzzyFunctionSampleInvalid),
FuzzyFunctionNumOfSamplesValid(FuzzyFunctionNumOfSamplesValid),
FuzzyFunctionNumOfSamplesInvalid(FuzzyFunctionNumOfSamplesInvalid),
FuzzyFunctionSignalIsDriftingDown(FuzzyFunctionSignalIsDriftingDown),
FuzzyFunctionSignalIsDriftingUp(FuzzyFunctionSignalIsDriftingUp),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable),
FuzzyFunctionSignalConditionLookBack(
FuzzyFunctionSignalConditionLookBack),
FuzzyFunctionSignalConditionHistoryDesicion(
FuzzyFunctionSignalConditionHistoryDesicion),
DriftLookbackRange(DriftLookbackRange),
SampleHistory(SampleHistorySize), DAB(DABSize),
DABHistory(DriftLookbackRange + 1),
LowestConfidenceMatchingHistory(SampleHistorySize),
- HighestConfidenceMismatchingHistory(SampleHistorySize) {}
+ HighestConfidenceMismatchingHistory(SampleHistorySize),
+ MeanX(DriftLookbackRange/2),
+ RegressionDivisor(0) {
+
+ for (unsigned int i = 0; i <= DriftLookbackRange; i++) {
+ RegressionDivisor += (i-MeanX)*(i-MeanX);
+ }
+ RegressionDivisor *= DABSize;
+ }
/// Destroys \p this object.
~SignalState(void) = default;
void leaveSignalState(void) noexcept {
DAB.clear();
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance = 0;
SignalStateInfo.StateIsValidAfterReentrance = false;
}
SignalStateInformation<CONFDATATYPE>
insertSample(INDATATYPE Sample) noexcept {
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance++;
validateSignalState(Sample);
SampleHistory.addEntry(Sample);
DAB.addEntry(Sample);
if (DAB.full()) {
// TODO: try median instead of avg
PROCDATATYPE AvgOfDAB = DAB.template average<PROCDATATYPE>();
DABHistory.addEntry(
DABHistoryEntry<PROCDATATYPE, CONFDATATYPE>(AvgOfDAB));
DAB.clear();
}
FuzzyFunctionNumOfSamplesMatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
FuzzyFunctionNumOfSamplesMismatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
checkSignalStability();
SignalStateInfo.ConfidenceOfMatchingState = TempConfidenceMatching;
SignalStateInfo.ConfidenceOfMismatchingState = TempConfidenceMismatching;
return SignalStateInfo;
}
/// Gives the confidence how likely the new sample matches the signal state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is matching the signal state.
CONFDATATYPE
confidenceSampleMatchesSignalState(INDATATYPE Sample) noexcept {
CONFDATATYPE ConfidenceOfBestCase = 0;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// Calculate distances to all history samples.
for (auto &HistorySample : SampleHistory) {
PROCDATATYPE RelativeDistance =
DistanceMetric(std::make_pair(Sample, HistorySample));
RelativeDistanceHistory.addEntry(RelativeDistance);
}
// Sort all calculated distances so that the lowest distance (will get the
// highest confidence) is at the beginning.
RelativeDistanceHistory.sortAscending();
CONFDATATYPE ConfidenceOfWorstFittingSample = 1;
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
// TODO (future): to accelerate . don't start with 1 start with some higher
// number because a low number (i guess lower than 5) will definetely lead
// to a low confidence. except the history is not full.
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
// TODO (future): if fuzzy is defined in a way that infinity is not 0 it
// would be a problem.
ConfidenceFromRelativeDistance = 0;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfWorstFittingSample = fuzzyAND(ConfidenceOfWorstFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfBestCase =
fuzzyOR(ConfidenceOfBestCase,
fuzzyAND(ConfidenceOfWorstFittingSample,
FuzzyFunctionNumOfSamplesMatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
TempConfidenceMatching = ConfidenceOfBestCase;
return ConfidenceOfBestCase;
}
/// Gives the confidence how likely the new sample mismatches the signal
/// state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is mismatching the signal state.
CONFDATATYPE
confidenceSampleMismatchesSignalState(INDATATYPE Sample) noexcept {
float ConfidenceOfWorstCase = 1;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// Calculate distances to all history samples.
for (auto &HistorySample : SampleHistory) {
RelativeDistanceHistory.addEntry(
DistanceMetric(std::make_pair(Sample, HistorySample)));
}
// Sort all calculated distances so that the highest distance (will get the
// lowest confidence) is at the beginning.
RelativeDistanceHistory.sortDescending();
CONFDATATYPE ConfidenceOfBestFittingSample = 0;
// TODO (future): to accelerate -> don't go until end. Confidences will only
// get higher. See comment in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)".
// Case 1 means that one (the worst fitting) sample of the history is
// compared with the new sample. Case 2 means the two worst history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
ConfidenceFromRelativeDistance = 1;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMismatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfBestFittingSample = fuzzyOR(ConfidenceOfBestFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfWorstCase =
fuzzyAND(ConfidenceOfWorstCase,
fuzzyOR(ConfidenceOfBestFittingSample,
FuzzyFunctionNumOfSamplesMismatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
TempConfidenceMismatching = ConfidenceOfWorstCase;
return ConfidenceOfWorstCase;
}
/// Gives information about the current signal state.
///
/// \return a struct SignalStateInformation that contains information about
/// the current signal state.
SignalStateInformation<CONFDATATYPE> signalStateInformation(void) noexcept {
return SignalStateInfo;
}
private:
void validateSignalState(INDATATYPE Sample) {
// TODO (future): WorstConfidenceDistance and BestConfidenceDistance could
// be set already in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)" and "CONFDATATYPE
// confidenceSampleMismatchesSignalState(INDATATYPE Sample)" when the new
// sample is compared to all history samples. This would save a lot time
// because the comparisons are done only once. However, it has to be asured
// that the these two functions are called before the insertation, and the
// FuzzyFunctions for validation and matching have to be the same!
CONFDATATYPE LowestConfidenceMatching = 1;
CONFDATATYPE HighestConfidenceMismatching = 0;
for (auto &HistorySample : SampleHistory) {
// TODO (future): think about using different fuzzy functions for
// validation and matching.
LowestConfidenceMatching =
fuzzyAND(LowestConfidenceMatching,
FuzzyFunctionSampleMatches(
DistanceMetric(std::make_pair(Sample, HistorySample))));
HighestConfidenceMismatching =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionSampleMismatches(
DistanceMetric(std::make_pair(Sample, HistorySample))));
}
LowestConfidenceMatchingHistory.addEntry(LowestConfidenceMatching);
HighestConfidenceMismatchingHistory.addEntry(HighestConfidenceMismatching);
LowestConfidenceMatching = LowestConfidenceMatchingHistory.lowestEntry();
HighestConfidenceMismatching =
HighestConfidenceMismatchingHistory.highestEntry();
SignalStateInfo.ConfidenceStateIsValid =
fuzzyAND(LowestConfidenceMatching,
FuzzyFunctionNumOfSamplesValid(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
SignalStateInfo.ConfidenceStateIsInvalid =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionNumOfSamplesInvalid(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
if (SignalStateInfo.ConfidenceStateIsValid >
SignalStateInfo.ConfidenceStateIsInvalid) {
if (SignalStateInfo.StateIsValid) {
SignalStateInfo.StateJustGotValid = false;
} else {
SignalStateInfo.StateJustGotValid = true;
}
SignalStateInfo.StateIsValid = true;
SignalStateInfo.StateIsValidAfterReentrance = true;
}
}
void checkSignalStability(void) {
- CONFDATATYPE CurrentConfidenceStable = 0;
- CONFDATATYPE CurrentConfidenceStateDriftingDown = 0;
- CONFDATATYPE CurrentConfidenceStateDriftingUp = 0;
-
- CONFDATATYPE HistoryConfidenceStable = 0;
- CONFDATATYPE HistoryConfidenceStateDriftingDown = 0;
- CONFDATATYPE HistoryConfidenceStateDriftingUp = 0;
-
- if (DABHistory.numberOfEntries() >= 2) {
+ if (DABHistory.numberOfEntries() > DriftLookbackRange) {
DABHistoryEntry<PROCDATATYPE, CONFDATATYPE> CurrentDAB =
DABHistory[DABHistory.numberOfEntries() - 1];
if (CurrentDAB.DABIsCurrent == true) {
+ CurrentDAB.DABIsCurrent = false;
+
+ PROCDATATYPE MeanY = 0;
+ PROCDATATYPE k = 0;
- // THIS WOULD BE FOR EQUATION NORMALIZATION
- // TODO: make the following also for distance measurement when comparing
- // sample with state and validate state
- /*
- // sigma correction
- if (NormalizedDistanceMetric<INDATATYPE, PROCDATATYPE>
- *NormalizableDistanceMetric = dynamic_cast<
- NormalizedDistanceMetric<INDATATYPE, PROCDATATYPE> *>(
- DistanceMetric)) {
- // old was safely casted to NewType
- NormalizableDistanceMetric->setNorm(
- // TODO: (1) Sigma von Sample
- // History(!) abholen, (2) irgendwas mit Sigma hier reinschreiben,
- // und (3) überlegen wegen zweiter History (länger) für
- // Sigmaberechnung
- );
- }
- */
// Iterate through all history DABs
- for (unsigned int t = 1;
- t <= DriftLookbackRange && t < DABHistory.numberOfEntries(); t++) {
+ for (unsigned int t = 0; t <= DriftLookbackRange; t++) {
- // Pick one history DAB
- DABHistoryEntry<PROCDATATYPE, CONFDATATYPE> DAB2Compare =
+ DABHistoryEntry<PROCDATATYPE, CONFDATATYPE> DAB_T =
DABHistory[DABHistory.numberOfEntries() - (t + 1)];
-
- // Calculate distance between most recent (completed) DAB and the
- // chosen history DAB
- PROCDATATYPE dist = DistanceMetric(
- std::make_pair(CurrentDAB.AvgValue, DAB2Compare.AvgValue));
-
- // Add current confidences for Stable, drift down and drift up
- // together
- CurrentConfidenceStable += FuzzyFunctionSignalIsStable(dist);
- CurrentConfidenceStateDriftingDown +=
- FuzzyFunctionSignalIsDriftingDown(dist);
- CurrentConfidenceStateDriftingUp +=
- FuzzyFunctionSignalIsDriftingUp(dist);
-
- // Add history confidences for Stable, drift down and drift up
- // together
- HistoryConfidenceStable += DAB2Compare.DecisionDABIsStable;
- HistoryConfidenceStateDriftingDown +=
- DAB2Compare.DecisionDABIsDriftingDown;
- HistoryConfidenceStateDriftingUp +=
- DAB2Compare.DecisionDABIsDriftingUp;
+ MeanY += DAB_T.AvgValue;
}
+ MeanY /= (DriftLookbackRange+1);
- // chose right divisor for average calculation
- unsigned int numOfCompares;
- if (DriftLookbackRange <= DABHistory.numberOfEntries())
- numOfCompares = DriftLookbackRange;
- else
- numOfCompares =
- static_cast<unsigned int>(DABHistory.numberOfEntries() - 1);
-
- // calculate the average of the current confidence decision
- CurrentConfidenceStable /= numOfCompares;
- CurrentConfidenceStateDriftingDown /= numOfCompares;
- CurrentConfidenceStateDriftingUp /= numOfCompares;
-
- // store the current confidence decision in current DAB
- CurrentDAB.DecisionDABIsStable = CurrentConfidenceStable;
- CurrentDAB.DecisionDABIsDriftingDown =
- CurrentConfidenceStateDriftingDown;
- CurrentDAB.DecisionDABIsDriftingUp = CurrentConfidenceStateDriftingUp;
- CurrentDAB.DABIsCurrent = false;
- // calculate the confidences for SignalStateInfo (current output)
- HistoryConfidenceStable =
- (HistoryConfidenceStable + CurrentConfidenceStable) /
- (numOfCompares + 1);
- HistoryConfidenceStateDriftingDown =
- (HistoryConfidenceStateDriftingDown +
- CurrentConfidenceStateDriftingDown) /
- (numOfCompares + 1);
- HistoryConfidenceStateDriftingUp = (HistoryConfidenceStateDriftingUp +
- CurrentConfidenceStateDriftingUp) /
- (numOfCompares + 1);
-
- // set SignalStateInfo Confidences
- SignalStateInfo.ConfidenceStateIsStable = HistoryConfidenceStable;
- SignalStateInfo.ConfidenceStateIsDrifting =
- HistoryConfidenceStateDriftingDown >
- HistoryConfidenceStateDriftingUp
- ? HistoryConfidenceStateDriftingDown
- : HistoryConfidenceStateDriftingUp;
+ for (unsigned int t = 0; t <= DriftLookbackRange; t++) {
+ DABHistoryEntry<PROCDATATYPE, CONFDATATYPE> DAB_T =
+ DABHistory[DABHistory.numberOfEntries() - (t + 1)];
+ k += (DriftLookbackRange - t - MeanX)*(DAB_T.AvgValue - MeanY);
+ }
+ k /= RegressionDivisor;
+
+ SignalStateInfo.ConfidenceStateIsStable =
+ FuzzyFunctionSignalIsStable(k);
SignalStateInfo.ConfidenceStateIsDriftingDown =
- HistoryConfidenceStateDriftingDown;
+ FuzzyFunctionSignalIsDriftingDown(k);
SignalStateInfo.ConfidenceStateIsDriftingUp =
- HistoryConfidenceStateDriftingUp;
+ FuzzyFunctionSignalIsDriftingUp(k);
+ if (SignalStateInfo.ConfidenceStateIsDriftingDown >
+ SignalStateInfo.ConfidenceStateIsDriftingUp) {
+ SignalStateInfo.ConfidenceStateIsDrifting =
+ SignalStateInfo.ConfidenceStateIsDriftingDown;
+ } else {
+ SignalStateInfo.ConfidenceStateIsDrifting =
+ SignalStateInfo.ConfidenceStateIsDriftingUp;
+ }
// set SignalStateInfo StateCondition
if (SignalStateInfo.ConfidenceStateIsStable >
SignalStateInfo.ConfidenceStateIsDrifting)
SignalStateInfo.StateCondition = StateConditions::STABLE;
else if (SignalStateInfo.ConfidenceStateIsStable <
SignalStateInfo.ConfidenceStateIsDrifting)
if (SignalStateInfo.ConfidenceStateIsDriftingDown >
SignalStateInfo.ConfidenceStateIsDriftingUp)
SignalStateInfo.StateCondition = StateConditions::DRIFTING_DN;
else if (SignalStateInfo.ConfidenceStateIsDriftingDown <
SignalStateInfo.ConfidenceStateIsDriftingUp)
SignalStateInfo.StateCondition = StateConditions::DRIFTING_UP;
else
SignalStateInfo.StateCondition = StateConditions::UNKNOWN;
else
SignalStateInfo.StateCondition = StateConditions::UNKNOWN;
}
} else {
SignalStateInfo.ConfidenceStateIsStable = 0;
SignalStateInfo.ConfidenceStateIsDrifting = 0;
SignalStateInfo.ConfidenceStateIsDriftingDown = 0;
SignalStateInfo.ConfidenceStateIsDriftingUp = 0;
SignalStateInfo.StateCondition = StateConditions::UNKNOWN;
}
}
}; // namespace agent
} // namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATE_HPP
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Thu, Jul 3, 11:56 AM (1 d, 16 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
157236
Default Alt Text
(39 KB)
Attached To
Mode
R20 SoC_Rosa_repo
Attached
Detach File
Event Timeline
Log In to Comment