Page Menu
Home
Phorge
Search
Configure Global Search
Log In
Files
F480215
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Size
44 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/include/rosa/agent/SignalState.hpp b/include/rosa/agent/SignalState.hpp
index 04ad2ff..6db80d0 100644
--- a/include/rosa/agent/SignalState.hpp
+++ b/include/rosa/agent/SignalState.hpp
@@ -1,696 +1,692 @@
//===-- rosa/agent/SignalState.hpp ------------------------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SignalState.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *signal state* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SIGNALSTATE_HPP
#define ROSA_AGENT_SIGNALSTATE_HPP
#include "rosa/agent/DistanceMetrics.hpp"
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/History.hpp"
#include "rosa/agent/State.hpp"
#include "rosa/support/math.hpp"
namespace rosa {
namespace agent {
/// Signal properties defining the properties of the signal which is monitored
/// by \c rosa::agent::SignalStateDetector and is saved in \c
/// rosa::agent::SignalStateInformation.
enum SignalProperties : uint8_t {
INPUT = 0, ///< The signal is an input signal
OUTPUT = 1 ///< The signal is an output signal
};
/// TODO: write description
template <typename PROCDATATYPE, typename CONFDATATYPE> struct DABHistoryEntry {
/// TODO: write description
PROCDATATYPE AvgValue;
/// TODO: write description
CONFDATATYPE DecisionDABIsStable;
/// TODO: write description
CONFDATATYPE DecisionDABIsDriftingDown;
/// TODO: write description
CONFDATATYPE DecisionDABIsDriftingUp;
/// TODO: write description
bool DABWasCurrent;
public:
DABHistoryEntry(PROCDATATYPE AvgValue) {
this->AvgValue = AvgValue;
this->DecisionDABIsStable = 0;
this->DecisionDABIsDriftingDown = 0;
this->DecisionDABIsDriftingUp = 0;
this->DABWasCurrent = false;
}
DABHistoryEntry() = default;
};
/// TODO: write description
template <typename CONFDATATYPE>
struct SignalStateInformation : StateInformation<CONFDATATYPE> {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence type is not to arithmetic");
/// ConfidenceOfMatchingState is the confidence how good the new sample
/// matches the state.
CONFDATATYPE ConfidenceOfMatchingState;
/// ConfidenceOfMatchingState is the confidence how bad the new sample
/// matches the state.
CONFDATATYPE ConfidenceOfMismatchingState;
/// The SignalProperty saves whether the monitored signal is an input our
/// output signal.
SignalProperties SignalProperty;
/// The SignalStateIsValid saves the number of samples which have been
/// inserted into the state after entering it.
uint32_t NumberOfInsertedSamplesAfterEntrance;
public:
SignalStateInformation(unsigned int SignalStateID,
SignalProperties _SignalProperty) {
this->StateID = SignalStateID;
this->SignalProperty = _SignalProperty;
this->StateCondition = StateConditions::UNKNOWN;
this->NumberOfInsertedSamplesAfterEntrance = 0;
this->StateIsValid = false;
this->StateJustGotValid = false;
this->StateIsValidAfterReentrance = false;
this->ConfidenceStateIsValid = 0;
this->ConfidenceStateIsInvalid = 0;
this->ConfidenceStateIsStable = 0;
this->ConfidenceStateIsDrifting = 0;
this->ConfidenceStateIsDriftingDown = 0;
this->ConfidenceStateIsDriftingUp = 0;
}
SignalStateInformation() = default;
};
/// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of
/// data in that the confidence values are given, \tparam PROCDATATYPE type of
/// the relative distance and the type of data in which DABs are saved.
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE>
class SignalState : public Functionality {
// Make sure the actual type arguments are matching our expectations.
STATIC_ASSERT((std::is_arithmetic<INDATATYPE>::value),
"input data type not arithmetic");
STATIC_ASSERT((std::is_arithmetic<CONFDATATYPE>::value),
"confidence data type is not to arithmetic");
STATIC_ASSERT(
(std::is_arithmetic<PROCDATATYPE>::value),
"process data type (DAB and Relative Distance) is not to arithmetic");
public:
// The metric to calculate the distance between two points
using DistanceMetricAbstraction =
Abstraction<std::pair<INDATATYPE, INDATATYPE>, PROCDATATYPE> &;
// For the convinience to write a shorter data type name
using PartFuncReference = PartialFunction<INDATATYPE, CONFDATATYPE> &;
// using PartFuncReference2 = ;
using StepFuncReference = StepFunction<INDATATYPE, CONFDATATYPE> &;
private:
/// SignalStateInfo is a struct of SignalStateInformation that contains
/// information about the current signal state.
SignalStateInformation<CONFDATATYPE> SignalStateInfo;
/// The metric to calculate the distance between two points
DistanceMetricAbstraction DistanceMetric;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMatches;
/// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history.
PartFuncReference FuzzyFunctionSampleMismatches;
/// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
StepFuncReference FuzzyFunctionNumOfSamplesMatches;
/// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
/// the confidence how many samples from the sampe history mismatch the new
/// sample.
StepFuncReference FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSampleValid is the fuzzy function that gives the
/// confidence how good one matches another sample in the sample
/// history. This is done to evaluate whether a state is valid.
PartFuncReference FuzzyFunctionSampleValid;
/// The FuzzyFunctionSampleInvalid is the fuzzy function that gives the
/// confidence how bad one sample matches another sample in the sample
/// history. This is done to evaluate whether a state is invalid.
PartFuncReference FuzzyFunctionSampleInvalid;
/// The FuzzyFunctionNumOfSamplesValid is the fuzzy function that gives the
/// confidence how many samples from the sample history match another sample.
/// This is done to evaluate whether a state is valid.
StepFuncReference FuzzyFunctionNumOfSamplesValid;
/// The FuzzyFunctionNumOfSamplesInvalid is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch another
/// sample. This is done to evaluate whether a state is invalid.
StepFuncReference FuzzyFunctionNumOfSamplesInvalid;
/// The FuzzyFunctionSignalIsDriftingDown is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting down.
PartFuncReference FuzzyFunctionSignalIsDriftingDown;
/// The FuzzyFunctionSignalIsDriftingUp is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting up.
PartFuncReference FuzzyFunctionSignalIsDriftingUp;
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is stable (not drifting).
PartFuncReference FuzzyFunctionSignalIsStable;
/// TODO: description
PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionLookBack;
/// TODO: description
PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionHistoryDesicion;
/// TODO: description
uint32_t DriftLookbackRange;
/// SampleHistory is a history in that the last sample values are stored.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO> SampleHistory;
/// DAB is a (usually) small history of the last sample values of which a
/// average is calculated if the DAB is full.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::SRWF> DAB;
/// DABHistory is a history in that the last DABs (to be exact, the averages
/// of the last DABs) are stored.
DynamicLengthHistory<DABHistoryEntry<INDATATYPE, CONFDATATYPE>,
HistoryPolicy::FIFO>
DABHistory;
/// LowestConfidenceMatchingHistory is a history in that the lowest confidence
/// for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
LowestConfidenceMatchingHistory;
/// HighestConfidenceMatchingHistory is a history in that the highest
/// confidence for the current sample matches all history samples are saved.
DynamicLengthHistory<INDATATYPE, HistoryPolicy::FIFO>
HighestConfidenceMismatchingHistory;
/// TempConfidenceMatching is the confidence how good a sample matches the
/// state. However, the value of this variable is only needed temporarly.
CONFDATATYPE TempConfidenceMatching = 0;
/// TempConfidenceMatching is the confidence how bad a sample matches the
/// state. However, the value of this variable is only needed temporarly.
CONFDATATYPE TempConfidenceMismatching = 0;
public:
/// Creates an instance by setting all parameters
/// \param SignalStateID The Id of the SignalStateinfo \c
/// SignalStateInformation.
///
/// \param DistanceMetric the distance metric to calculate the distance
/// between two points
///
/// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
/// fuzzy function that gives the confidence how good the new sample matches
/// another sample in the sample history.
///
/// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
/// the fuzzy function that gives the confidence how bad the new sample
/// matches another sample in the sample history.
///
/// \param FuzzyFunctionNumOfSamplesMatches The
/// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
///
/// \param FuzzyFunctionNumOfSamplesMismatches The
/// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history mismatch the new
/// sample.
///
/// \param FuzzyFunctionSignalIsDriftingDown The
/// FuzzyFunctionSignalIsDriftingDown is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting down.
///
///
/// \param FuzzyFunctionSignalIsDriftingUp The FuzzyFunctionSignalIsDriftingUp
/// is the fuzzy function that gives the confidence how likely it is that the
/// signal (resp. the state of a signal) is drifting down.
///
/// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
/// fuzzy function that gives the confidence how likely it is that the signal
/// (resp. the state of a signal) is stable (not drifting).
///
/// \param SampleHistorySize Size of the Sample History \c
/// DynamicLengthHistory . SampleHistory is a history in that the last sample
/// values are stored.
///
- /// \param DABSize Size of DAB \c DynamicLengthHistory . DAB is a (usually)
- /// small history of the last sample values of which a average is calculated
- /// if the DAB is full.
- ///
SignalState(
uint32_t SignalStateID, SignalProperties SignalProperty,
uint32_t SampleHistorySize, uint32_t DABSize,
DistanceMetricAbstraction DistanceMetric,
PartFuncReference FuzzyFunctionSampleMatches,
PartFuncReference FuzzyFunctionSampleMismatches,
StepFuncReference FuzzyFunctionNumOfSamplesMatches,
StepFuncReference FuzzyFunctionNumOfSamplesMismatches,
PartFuncReference FuzzyFunctionSampleValid,
PartFuncReference FuzzyFunctionSampleInvalid,
StepFuncReference FuzzyFunctionNumOfSamplesValid,
StepFuncReference FuzzyFunctionNumOfSamplesInvalid,
PartFuncReference FuzzyFunctionSignalIsDriftingDown,
PartFuncReference FuzzyFunctionSignalIsDriftingUp,
PartFuncReference FuzzyFunctionSignalIsStable,
PartialFunction<uint32_t, float> &FuzzyFunctionSignalConditionLookBack,
PartialFunction<uint32_t, float>
&FuzzyFunctionSignalConditionHistoryDesicion,
uint32_t DriftLookbackRange) noexcept
: SignalStateInfo{SignalStateID, SignalProperty},
DistanceMetric(DistanceMetric),
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSampleValid(FuzzyFunctionSampleValid),
FuzzyFunctionSampleInvalid(FuzzyFunctionSampleInvalid),
FuzzyFunctionNumOfSamplesValid(FuzzyFunctionNumOfSamplesValid),
FuzzyFunctionNumOfSamplesInvalid(FuzzyFunctionNumOfSamplesInvalid),
FuzzyFunctionSignalIsDriftingDown(FuzzyFunctionSignalIsDriftingDown),
FuzzyFunctionSignalIsDriftingUp(FuzzyFunctionSignalIsDriftingUp),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable),
FuzzyFunctionSignalConditionLookBack(
FuzzyFunctionSignalConditionLookBack),
FuzzyFunctionSignalConditionHistoryDesicion(
FuzzyFunctionSignalConditionHistoryDesicion),
DriftLookbackRange(DriftLookbackRange),
SampleHistory(SampleHistorySize), DAB(DABSize),
DABHistory(DriftLookbackRange + 1),
LowestConfidenceMatchingHistory(SampleHistorySize),
HighestConfidenceMismatchingHistory(SampleHistorySize) {}
/// Destroys \p this object.
~SignalState(void) = default;
void leaveSignalState(void) noexcept {
DAB.clear();
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance = 0;
SignalStateInfo.StateIsValidAfterReentrance = false;
}
SignalStateInformation<CONFDATATYPE>
insertSample(INDATATYPE Sample) noexcept {
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance++;
validateSignalState(Sample);
SampleHistory.addEntry(Sample);
DAB.addEntry(Sample);
if (DAB.full()) {
// TODO: try median instead of avg
PROCDATATYPE AvgOfDAB = DAB.template average<PROCDATATYPE>();
// DABHistory.addEntry(AvgOfDAB);
DABHistory.addEntry(
DABHistoryEntry<PROCDATATYPE, CONFDATATYPE>(AvgOfDAB));
DAB.clear();
}
FuzzyFunctionNumOfSamplesMatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
FuzzyFunctionNumOfSamplesMismatches.setRightLimit(
static_cast<INDATATYPE>(SampleHistory.numberOfEntries()));
checkSignalStability();
SignalStateInfo.ConfidenceOfMatchingState = TempConfidenceMatching;
SignalStateInfo.ConfidenceOfMismatchingState = TempConfidenceMismatching;
return SignalStateInfo;
}
/// Gives the confidence how likely the new sample matches the signal state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is matching the signal state.
CONFDATATYPE
confidenceSampleMatchesSignalState(INDATATYPE Sample) noexcept {
CONFDATATYPE ConfidenceOfBestCase = 0;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// Calculate distances to all history samples.
for (auto &HistorySample : SampleHistory) {
PROCDATATYPE RelativeDistance =
DistanceMetric(std::make_pair(Sample, HistorySample));
RelativeDistanceHistory.addEntry(RelativeDistance);
}
// Sort all calculated distances so that the lowest distance (will get the
// highest confidence) is at the beginning.
RelativeDistanceHistory.sortAscending();
CONFDATATYPE ConfidenceOfWorstFittingSample = 1;
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
// TODO (future): to accelerate . don't start with 1 start with some higher
// number because a low number (i guess lower than 5) will definetely lead
// to a low confidence. except the history is not full.
// Case 1 means that one (the best fitting) sample of the history is
// compared with the new sample. Case 2 means the two best history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
// TODO (future): if fuzzy is defined in a way that infinity is not 0 it
// would be a problem.
ConfidenceFromRelativeDistance = 0;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfWorstFittingSample = fuzzyAND(ConfidenceOfWorstFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfBestCase =
fuzzyOR(ConfidenceOfBestCase,
fuzzyAND(ConfidenceOfWorstFittingSample,
FuzzyFunctionNumOfSamplesMatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
TempConfidenceMatching = ConfidenceOfBestCase;
return ConfidenceOfBestCase;
}
/// Gives the confidence how likely the new sample mismatches the signal
/// state.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the confidence of the new sample is mismatching the signal state.
CONFDATATYPE
confidenceSampleMismatchesSignalState(INDATATYPE Sample) noexcept {
float ConfidenceOfWorstCase = 1;
DynamicLengthHistory<PROCDATATYPE, HistoryPolicy::FIFO>
RelativeDistanceHistory(SampleHistory.maxLength());
// Calculate distances to all history samples.
for (auto &HistorySample : SampleHistory) {
RelativeDistanceHistory.addEntry(
DistanceMetric(std::make_pair(Sample, HistorySample)));
}
// Sort all calculated distances so that the highest distance (will get the
// lowest confidence) is at the beginning.
RelativeDistanceHistory.sortDescending();
CONFDATATYPE ConfidenceOfBestFittingSample = 0;
// TODO (future): to accelerate -> don't go until end. Confidences will only
// get higher. See comment in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)".
// Case 1 means that one (the worst fitting) sample of the history is
// compared with the new sample. Case 2 means the two worst history samples
// are compared with the new sample. And so on.
for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries();
Case++) {
CONFDATATYPE ConfidenceFromRelativeDistance;
if (std::isinf(RelativeDistanceHistory[Case])) {
ConfidenceFromRelativeDistance = 1;
} else {
ConfidenceFromRelativeDistance =
FuzzyFunctionSampleMismatches(RelativeDistanceHistory[Case]);
}
ConfidenceOfBestFittingSample = fuzzyOR(ConfidenceOfBestFittingSample,
ConfidenceFromRelativeDistance);
ConfidenceOfWorstCase =
fuzzyAND(ConfidenceOfWorstCase,
fuzzyOR(ConfidenceOfBestFittingSample,
FuzzyFunctionNumOfSamplesMismatches(
static_cast<CONFDATATYPE>(Case) + 1)));
}
TempConfidenceMismatching = ConfidenceOfWorstCase;
return ConfidenceOfWorstCase;
}
/// Gives information about the current signal state.
///
/// \return a struct SignalStateInformation that contains information about
/// the current signal state.
SignalStateInformation<CONFDATATYPE> signalStateInformation(void) noexcept {
return SignalStateInfo;
}
private:
void validateSignalState(INDATATYPE Sample) {
// TODO (future): WorstConfidenceDistance and BestConfidenceDistance could
// be set already in "CONFDATATYPE
// confidenceSampleMatchesSignalState(INDATATYPE Sample)" and "CONFDATATYPE
// confidenceSampleMismatchesSignalState(INDATATYPE Sample)" when the new
// sample is compared to all history samples. This would save a lot time
// because the comparisons are done only once. However, it has to be asured
// that the these two functions are called before the insertation, and the
// FuzzyFunctions for validation and matching have to be the same!
CONFDATATYPE LowestConfidenceMatching = 1;
CONFDATATYPE HighestConfidenceMismatching = 0;
for (auto &HistorySample : SampleHistory) {
// TODO (future): think about using different fuzzy functions for
// validation and matching.
LowestConfidenceMatching =
fuzzyAND(LowestConfidenceMatching,
FuzzyFunctionSampleMatches(
DistanceMetric(std::make_pair(Sample, HistorySample))));
HighestConfidenceMismatching =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionSampleMismatches(
DistanceMetric(std::make_pair(Sample, HistorySample))));
}
LowestConfidenceMatchingHistory.addEntry(LowestConfidenceMatching);
HighestConfidenceMismatchingHistory.addEntry(HighestConfidenceMismatching);
LowestConfidenceMatching = LowestConfidenceMatchingHistory.lowestEntry();
HighestConfidenceMismatching =
HighestConfidenceMismatchingHistory.highestEntry();
SignalStateInfo.ConfidenceStateIsValid =
fuzzyAND(LowestConfidenceMatching,
FuzzyFunctionNumOfSamplesValid(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
SignalStateInfo.ConfidenceStateIsInvalid =
fuzzyOR(HighestConfidenceMismatching,
FuzzyFunctionNumOfSamplesInvalid(static_cast<INDATATYPE>(
SignalStateInfo.NumberOfInsertedSamplesAfterEntrance)));
if (SignalStateInfo.ConfidenceStateIsValid >
SignalStateInfo.ConfidenceStateIsInvalid) {
if (SignalStateInfo.StateIsValid) {
SignalStateInfo.StateJustGotValid = false;
} else {
SignalStateInfo.StateJustGotValid = true;
}
SignalStateInfo.StateIsValid = true;
SignalStateInfo.StateIsValidAfterReentrance = true;
}
}
void checkSignalStability(void) {
CONFDATATYPE CurrentConfidenceStable = 0;
CONFDATATYPE CurrentConfidenceStateDriftingDown = 0;
CONFDATATYPE CurrentConfidenceStateDriftingUp = 0;
CONFDATATYPE HistoryConfidenceStable = 0;
CONFDATATYPE HistoryConfidenceStateDriftingDown = 0;
CONFDATATYPE HistoryConfidenceStateDriftingUp = 0;
if (DABHistory.numberOfEntries() >= 2) {
DABHistoryEntry<PROCDATATYPE, CONFDATATYPE> CurrentDAB =
DABHistory[DABHistory.numberOfEntries() - 1];
if (CurrentDAB.DABWasCurrent == false) {
DABHistoryEntry<PROCDATATYPE, CONFDATATYPE> DAB2Compare;
// THIS WOULD BE FOR EQUATION NORMALIZATION
// TODO: make the following also for distance measurement when comparing
// sample with state and validate state
/*
// sigma correction
if (NormalizedDistanceMetric<INDATATYPE, PROCDATATYPE>
*NormalizableDistanceMetric = dynamic_cast<
NormalizedDistanceMetric<INDATATYPE, PROCDATATYPE> *>(
DistanceMetric)) {
// old was safely casted to NewType
NormalizableDistanceMetric->setNorm(
// TODO: (1) Sigma von Sample
// History(!) abholen, (2) irgendwas mit Sigma hier reinschreiben,
// und (3) überlegen wegen zweiter History (länger) für
// Sigmaberechnung
);
}
*/
// Iterate through all history DABs
for (unsigned int t = 1;
t <= DriftLookbackRange && t < DABHistory.numberOfEntries(); t++) {
// Pick one history DAB
DAB2Compare = DABHistory[DABHistory.numberOfEntries() - (t + 1)];
// Calculate distance between most recent (completed) DAB and the
// chosen history DAB
PROCDATATYPE dist = DistanceMetric(
std::make_pair(CurrentDAB.AvgValue, DAB2Compare.AvgValue));
// Add current confidences for Stable, drift down and drift up
// together
CurrentConfidenceStable += FuzzyFunctionSignalIsStable(dist);
CurrentConfidenceStateDriftingDown +=
FuzzyFunctionSignalIsDriftingDown(dist);
CurrentConfidenceStateDriftingUp +=
FuzzyFunctionSignalIsDriftingUp(dist);
// Add history confidences for Stable, drift down and drift up
// together
HistoryConfidenceStable += DAB2Compare.DecisionDABIsStable;
HistoryConfidenceStateDriftingDown +=
DAB2Compare.DecisionDABIsDriftingDown;
HistoryConfidenceStateDriftingUp +=
DAB2Compare.DecisionDABIsDriftingUp;
}
// chose right divisor for average calculation
unsigned int numOfCompares;
if (DriftLookbackRange <= DABHistory.numberOfEntries())
numOfCompares = DriftLookbackRange;
else
numOfCompares =
static_cast<unsigned int>(DABHistory.numberOfEntries());
// calculate the average of the current confidence decision
CurrentConfidenceStable /= numOfCompares;
CurrentConfidenceStateDriftingDown /= numOfCompares;
CurrentConfidenceStateDriftingUp /= numOfCompares;
// store the current confidence decision in current DAB
CurrentDAB.DecisionDABIsStable = CurrentConfidenceStable;
CurrentDAB.DecisionDABIsDriftingDown =
CurrentConfidenceStateDriftingDown;
CurrentDAB.DecisionDABIsDriftingUp = CurrentConfidenceStateDriftingUp;
CurrentDAB.DABWasCurrent = true;
// calculate the confidences for SignalStateInfo (current output)
HistoryConfidenceStable =
(HistoryConfidenceStable + CurrentConfidenceStable) /
(numOfCompares + 1);
HistoryConfidenceStateDriftingDown =
(HistoryConfidenceStateDriftingDown +
CurrentConfidenceStateDriftingDown) /
(numOfCompares + 1);
HistoryConfidenceStateDriftingUp = (HistoryConfidenceStateDriftingUp +
CurrentConfidenceStateDriftingUp) /
(numOfCompares + 1);
// set SignalStateInfo Confidences
SignalStateInfo.ConfidenceStateIsStable = HistoryConfidenceStable;
SignalStateInfo.ConfidenceStateIsDrifting =
HistoryConfidenceStateDriftingDown >
HistoryConfidenceStateDriftingUp
? HistoryConfidenceStateDriftingDown
: HistoryConfidenceStateDriftingUp;
SignalStateInfo.ConfidenceStateIsDriftingDown =
HistoryConfidenceStateDriftingDown;
SignalStateInfo.ConfidenceStateIsDriftingUp =
HistoryConfidenceStateDriftingUp;
// set SignalStateInfo StateCondition
if (SignalStateInfo.ConfidenceStateIsStable >
SignalStateInfo.ConfidenceStateIsDrifting)
SignalStateInfo.StateCondition = StateConditions::STABLE;
else if (SignalStateInfo.ConfidenceStateIsStable <
SignalStateInfo.ConfidenceStateIsDrifting)
if (SignalStateInfo.ConfidenceStateIsDriftingDown >
SignalStateInfo.ConfidenceStateIsDriftingUp)
SignalStateInfo.StateCondition = StateConditions::DRIFTING_DN;
else if (SignalStateInfo.ConfidenceStateIsDriftingDown <
SignalStateInfo.ConfidenceStateIsDriftingUp)
SignalStateInfo.StateCondition = StateConditions::DRIFTING_UP;
else
SignalStateInfo.StateCondition = StateConditions::UNKNOWN;
else
SignalStateInfo.StateCondition = StateConditions::UNKNOWN;
}
} else {
SignalStateInfo.ConfidenceStateIsStable = 0;
SignalStateInfo.ConfidenceStateIsDrifting = 0;
SignalStateInfo.ConfidenceStateIsDriftingDown = 0;
SignalStateInfo.ConfidenceStateIsDriftingUp = 0;
SignalStateInfo.StateCondition = StateConditions::UNKNOWN;
}
}
}; // namespace agent
} // namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATE_HPP
diff --git a/include/rosa/agent/SignalStateDetector.hpp b/include/rosa/agent/SignalStateDetector.hpp
index d8437c5..e07d78b 100644
--- a/include/rosa/agent/SignalStateDetector.hpp
+++ b/include/rosa/agent/SignalStateDetector.hpp
@@ -1,348 +1,346 @@
//===-- rosa/agent/SignalStateDetector.hpp ----------------------*- C++ -*-===//
//
// The RoSA Framework
//
// Distributed under the terms and conditions of the Boost Software License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/SignalStateDetector.hpp
///
/// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *signal state detector* *functionality*.
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
#define ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
#include "rosa/agent/Functionality.h"
#include "rosa/agent/SignalState.hpp"
#include "rosa/agent/StateDetector.hpp"
#include <vector>
namespace rosa {
namespace agent {
/// Implements \c rosa::agent::SignalStateDetector as a functionality that
/// detects signal states given on input samples.
///
/// \note This implementation is supposed to be used for samples of an
/// arithmetic type.
///
/// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of
/// data in that the confidence values are given, \tparam PROCDATATYPE type of
/// the relative distance and the type of data in which DABs are saved.
template <typename INDATATYPE, typename CONFDATATYPE, typename PROCDATATYPE,
HistoryPolicy HP>
class SignalStateDetector
: public StateDetector<INDATATYPE, CONFDATATYPE, PROCDATATYPE, HP> {
using StateDetector =
StateDetector<INDATATYPE, CONFDATATYPE, PROCDATATYPE, HP>;
using DistanceMetricAbstraction =
typename StateDetector::DistanceMetricAbstraction;
using PartFuncPointer = typename StateDetector::PartFuncPointer;
using StepFuncPointer = typename StateDetector::StepFuncPointer;
private:
// For the convinience to write a shorter data type name
using SignalStatePtr =
std::shared_ptr<SignalState<INDATATYPE, CONFDATATYPE, PROCDATATYPE>>;
/// The SignalProperty saves whether the monitored signal is an input our
/// output signal.
SignalProperties SignalProperty;
/// The CurrentSignalState is a pointer to the (saved) signal state in which
/// the actual variable (signal) of the observed system is.
SignalStatePtr CurrentSignalState;
/// The DetectedSignalStates is a history in that all detected signal states
/// are saved.
DynamicLengthHistory<SignalStatePtr, HP> DetectedSignalStates;
/// The metric to calculate the distance between two points
DistanceMetricAbstraction DistanceMetric;
/// The FuzzyFunctionSampleMatches is the fuzzy function that gives the
/// confidence how good the new sample matches another sample in the sample
/// history. This is done to evaluate whether one sample belongs to an
/// existing state.
PartFuncPointer FuzzyFunctionSampleMatches;
/// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the
/// confidence how bad the new sample matches another sample in the sample
/// history. This is done to evaluate whether one sample does not belong to an
/// existing state.
PartFuncPointer FuzzyFunctionSampleMismatches;
/// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sample history match the new sample.
/// This is done to evaluate whether one sample belongs to an existing state.
StepFuncPointer FuzzyFunctionNumOfSamplesMatches;
/// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch the new
/// sample. This is done to evaluate whether one sample does not belong to an
/// existing state.
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches;
/// The FuzzyFunctionSampleValid is the fuzzy function that gives the
/// confidence how good one matches another sample in the sample
/// history. This is done to evaluate whether a state is valid.
PartFuncPointer FuzzyFunctionSampleValid;
/// The FuzzyFunctionSampleInvalid is the fuzzy function that gives the
/// confidence how bad one sample matches another sample in the sample
/// history. This is done to evaluate whether a state is invalid.
PartFuncPointer FuzzyFunctionSampleInvalid;
/// The FuzzyFunctionNumOfSamplesValid is the fuzzy function that gives the
/// confidence how many samples from the sample history match another sample.
/// This is done to evaluate whether a state is valid.
StepFuncPointer FuzzyFunctionNumOfSamplesValid;
/// The FuzzyFunctionNumOfSamplesInvalid is the fuzzy function that gives
/// the confidence how many samples from the sample history mismatch another
/// sample. This is done to evaluate whether a state is invalid.
StepFuncPointer FuzzyFunctionNumOfSamplesInvalid;
/// The FuzzyFunctionSignalIsDriftingDown is the fuzzy function that gives the
/// confidence how likely it is that the signal is drifting down.
PartFuncPointer FuzzyFunctionSignalIsDriftingDown;
/// The FuzzyFunctionSignalIsDriftingUp is the fuzzy function that gives the
/// confidence how likely it is that the signal is drifting up.
PartFuncPointer FuzzyFunctionSignalIsDriftingUp;
/// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the
/// confidence how likely it is that the signal is stable (not drifting).
PartFuncPointer FuzzyFunctionSignalIsStable;
/// TODO: describe
std::shared_ptr<PartialFunction<uint32_t, float>>
FuzzyFunctionSignalConditionLookBack;
/// TODO: describe
std::shared_ptr<PartialFunction<uint32_t, float>>
FuzzyFunctionSignalConditionHistoryDesicion;
/// TODO: describe -> how man steps back in comparison and is also size of
/// DABhistory
uint32_t DriftLookbackRange;
/// SampleHistorySize is the (maximum) size of the sample history.
uint32_t SampleHistorySize;
/// DABSize the size of a DAB (Discrete Average Block).
uint32_t DABSize;
public:
/// Creates an instance by setting all parameters
/// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the
/// fuzzy function that gives the confidence how good the new sample matches
/// another sample in the sample history.
///
/// \param DistanceMetric The metric to calculate the distance between two
/// points
///
/// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is
/// the fuzzy function that gives the confidence how bad the new sample
/// matches another sample in the sample history.
///
/// \param FuzzyFunctionNumOfSamplesMatches The
/// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history match the new sample.
///
/// \param FuzzyFunctionNumOfSamplesMismatches The
/// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the
/// confidence how many samples from the sampe history mismatch the new
/// sample.
///
/// \param FuzzyFunctionSignalIsDriftingDown The
/// FuzzyFunctionSignalIsDriftingDown is the fuzzy function that gives the
/// confidence how likely it is that the signal (resp. the state of a signal)
/// is drifting down.
///
/// \param FuzzyFunctionSignalIsDriftingUp The FuzzyFunctionSignalIsDriftingUp
/// is the fuzzy function that gives the confidence how likely it is that the
/// signal (resp. the state of a signal) is drifting up.
///
/// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the
/// fuzzy function that gives the confidence how likely it is that the signal
/// (resp. the state of a signal) is stable (not drifting).
///
/// \param SampleHistorySize Sets the History size which will be used by \c
/// SignalState.
///
- /// \param DABSize Sets the DAB size which will be used by \c SignalState.
- ///
SignalStateDetector(SignalProperties SignalProperty,
uint32_t MaximumNumberOfSignalStates,
DistanceMetricAbstraction DistanceMetric,
PartFuncPointer FuzzyFunctionSampleMatches,
PartFuncPointer FuzzyFunctionSampleMismatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMatches,
StepFuncPointer FuzzyFunctionNumOfSamplesMismatches,
PartFuncPointer FuzzyFunctionSampleValid,
PartFuncPointer FuzzyFunctionSampleInvalid,
StepFuncPointer FuzzyFunctionNumOfSamplesValid,
StepFuncPointer FuzzyFunctionNumOfSamplesInvalid,
PartFuncPointer FuzzyFunctionSignalIsDriftingDown,
PartFuncPointer FuzzyFunctionSignalIsDriftingUp,
PartFuncPointer FuzzyFunctionSignalIsStable,
std::shared_ptr<PartialFunction<uint32_t, float>>
FuzzyFunctionSignalConditionLookBack,
std::shared_ptr<PartialFunction<uint32_t, float>>
FuzzyFunctionSignalConditionHistoryDesicion,
uint32_t DriftLookbackRange,
uint32_t SampleHistorySize) noexcept
: SignalProperty(SignalProperty), CurrentSignalState(nullptr),
DetectedSignalStates(MaximumNumberOfSignalStates),
DistanceMetric(DistanceMetric),
FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches),
FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches),
FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches),
FuzzyFunctionNumOfSamplesMismatches(
FuzzyFunctionNumOfSamplesMismatches),
FuzzyFunctionSampleValid(FuzzyFunctionSampleValid),
FuzzyFunctionSampleInvalid(FuzzyFunctionSampleInvalid),
FuzzyFunctionNumOfSamplesValid(FuzzyFunctionNumOfSamplesValid),
FuzzyFunctionNumOfSamplesInvalid(FuzzyFunctionNumOfSamplesInvalid),
FuzzyFunctionSignalIsDriftingDown(FuzzyFunctionSignalIsDriftingDown),
FuzzyFunctionSignalIsDriftingUp(FuzzyFunctionSignalIsDriftingUp),
FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable),
FuzzyFunctionSignalConditionLookBack(
FuzzyFunctionSignalConditionLookBack),
FuzzyFunctionSignalConditionHistoryDesicion(
FuzzyFunctionSignalConditionHistoryDesicion),
DriftLookbackRange(DriftLookbackRange),
SampleHistorySize(SampleHistorySize) {
this->NextStateID = 1;
this->StateHasChanged = false;
}
/// Destroys \p this object.
~SignalStateDetector(void) = default;
/// Detects the signal state to which the new sample belongs or create a new
/// signal state if the new sample does not match to any of the saved states.
///
/// \param Sample is the actual sample of the observed signal.
///
/// \return the information of the current signal state (signal state ID and
/// other parameters).
// TODO (future): change this function to an operator()-function
SignalStateInformation<CONFDATATYPE>
detectSignalState(INDATATYPE Sample) noexcept {
if (!CurrentSignalState) {
ASSERT(DetectedSignalStates.empty());
SignalStatePtr S = createNewSignalState();
CurrentSignalState = S;
} else {
// TODO (future): maybe there is a better way than a relative distance
// comparison. Maybe somehow a mix of relative and absolute?
CONFDATATYPE ConfidenceSampleMatchesSignalState =
CurrentSignalState->confidenceSampleMatchesSignalState(Sample);
CONFDATATYPE ConfidenceSampleMismatchesSignalState =
CurrentSignalState->confidenceSampleMismatchesSignalState(Sample);
this->StateHasChanged = ConfidenceSampleMatchesSignalState <=
ConfidenceSampleMismatchesSignalState;
if (this->StateHasChanged) {
if (CurrentSignalState->signalStateInformation().StateIsValid)
CurrentSignalState->leaveSignalState();
else
DetectedSignalStates.deleteEntry(CurrentSignalState);
// TODO (future): additionally save averages to enable fast iteration
// through recorded signl state history (maybe sort vector based on
// these average values)
CurrentSignalState = nullptr;
for (auto &SavedSignalState : DetectedSignalStates) {
ConfidenceSampleMatchesSignalState =
SavedSignalState->confidenceSampleMatchesSignalState(Sample);
ConfidenceSampleMismatchesSignalState =
SavedSignalState->confidenceSampleMismatchesSignalState(Sample);
if (ConfidenceSampleMatchesSignalState >
ConfidenceSampleMismatchesSignalState) {
// TODO (future): maybe it would be better to compare
// ConfidenceSampleMatchesSignalState of all signal states in the
// vector in order to find the best matching signal state.
CurrentSignalState = SavedSignalState;
break;
}
}
if (!CurrentSignalState) {
SignalStatePtr S = createNewSignalState();
CurrentSignalState = S;
}
}
}
SignalStateInformation<CONFDATATYPE> SignalStateInfo =
CurrentSignalState->insertSample(Sample);
if (SignalStateInfo.StateJustGotValid) {
this->NextStateID++;
}
return SignalStateInfo;
}
/// Gives information about the current signal state.
///
/// \return a struct SignalStateInformation that contains information about
/// the current signal state or NULL if no current signal state exists.
SignalStateInformation<CONFDATATYPE>
currentSignalStateInformation(void) noexcept {
if (CurrentSignalState) {
return CurrentSignalState->signalStateInformation();
} else {
return NULL;
}
}
/// Gives information whether a signal state change has happened or not.
///
/// \return true if a signal state change has happened, and false if not.
bool stateHasChanged(void) noexcept { return this->StateHasChanged; }
private:
/// Creates a new signal state and adds it to the signal state vector in which
/// all known states are saved.
///
/// \return a pointer to the newly created signal state or NULL if no state
/// could be created.
SignalStatePtr createNewSignalState(void) noexcept {
SignalStatePtr S(new SignalState<INDATATYPE, CONFDATATYPE, PROCDATATYPE>(
this->NextStateID, SignalProperty, SampleHistorySize, DABSize,
*DistanceMetric, *FuzzyFunctionSampleMatches,
*FuzzyFunctionSampleMismatches, *FuzzyFunctionNumOfSamplesMatches,
*FuzzyFunctionNumOfSamplesMismatches, *FuzzyFunctionSampleValid,
*FuzzyFunctionSampleInvalid, *FuzzyFunctionNumOfSamplesValid,
*FuzzyFunctionNumOfSamplesInvalid, *FuzzyFunctionSignalIsDriftingDown,
*FuzzyFunctionSignalIsDriftingUp, *FuzzyFunctionSignalIsStable,
*FuzzyFunctionSignalConditionLookBack,
*FuzzyFunctionSignalConditionHistoryDesicion, DriftLookbackRange));
DetectedSignalStates.addEntry(S);
return S;
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_SIGNALSTATEDETECTOR_HPP
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sun, Oct 19, 5:29 PM (14 h, 58 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
199615
Default Alt Text
(44 KB)
Attached To
Mode
R20 SoC_Rosa_repo
Attached
Detach File
Event Timeline
Log In to Comment