Page MenuHomePhorge

No OneTemporary

Size
103 KB
Referenced Files
None
Subscribers
None
diff --git a/Version_Max_07_05_2018_CMake/src/Sensor.cpp b/Version_Max_07_05_2018_CMake/src/Sensor.cpp
index ba89188..06776da 100755
--- a/Version_Max_07_05_2018_CMake/src/Sensor.cpp
+++ b/Version_Max_07_05_2018_CMake/src/Sensor.cpp
@@ -1,166 +1,184 @@
#include "Sensor.h"
#include <stdio.h>
//unsigned int Sensor :: number_of_sensors = 0;
void Sensor :: initialize_sensor() {
this->flag_masteragent_is_mounted = UNMOUNTED;
this->flag_masteragent_outputport_is_active = INACTIVE;
this->flag_sensor_value_is_valid = INVALID;
this->flag_sensor_value_has_changed = NO;
this->flag_send_value_only_when_changed = NO;
workingCycleCounter = 1;
}
Sensor :: Sensor() {
set_name(NO_NAME);
initialize_sensor();
}
Sensor :: Sensor(char* name) {
set_name(name);
initialize_sensor();
}
// ----- Runtime Functions -----
void Sensor :: set_sensorValue(float sensor_value) {
- if(this->sensor_value != sensor_value) {
- flag_sensor_value_has_changed = YES;
+
+ if (sensor_value != sensor_value) { //If NaN
+ if (flag_sensor_value_is_valid == true) {
+ // don't do anything .. just keep old value
+ }
+ else {
+ this->sensor_value = 0; //xxx - don't know if 0 is the best default value.. but in the beginning of a dataset, it most likely won't affact anything
+ }
}
- flag_sensor_value_is_valid = VALID;
- this->sensor_value = sensor_value;
+ else {
+ if (flag_sensor_value_is_valid == true) {
+ if (this->sensor_value != sensor_value) {
+ flag_sensor_value_has_changed = YES;
+ }
+ }
+
+ flag_sensor_value_is_valid = VALID;
+ this->sensor_value = sensor_value;
+ }
+
+
+
+
//printf("Sensor %s updated with: %f\n", name, sensor_value);
}
float Sensor :: get_sensorValue() {
return sensor_value;
}
void Sensor :: trigger() {
if (workingCycleCounter == 1) {
//TODO: difference int and float
if(this->flag_sensor_value_is_valid && this->flag_masteragent_is_mounted && this->flag_masteragent_outputport_is_active){
if(flag_send_value_only_when_changed) {
if(flag_sensor_value_has_changed) {
mounted_masteragent_outputport->send_MsgUp(sensor_value);
flag_sensor_value_has_changed = NO;
}
}
else {
mounted_masteragent_outputport->send_MsgUp(sensor_value);
flag_sensor_value_has_changed = NO;
}
}
}
if (workingCycleCounter < get_workingCycle())
workingCycleCounter++;
else
workingCycleCounter = 1;
}
// ----- Setup Functions -----
bool Sensor :: mount_agent(Channel* outputport) {
if(outputport != NULL) {
this->mounted_masteragent_outputport = outputport;
this->flag_masteragent_is_mounted = MOUNTED;
this->flag_masteragent_outputport_is_active = ACTIVE;
return true;
}
return false;
}
void Sensor :: set_flag_send_value_only_when_changed(bool flag_send_value_only_when_changed) {
this->flag_send_value_only_when_changed = flag_send_value_only_when_changed;
}
bool Sensor :: get_flag_send_value_only_when_changed() {
return this->flag_send_value_only_when_changed;
}
// ----- set/get -----
void Sensor :: set_flag_sensor_value_is_valid(bool flag_sensor_value_is_valid) {
this->flag_sensor_value_is_valid = flag_sensor_value_is_valid;
}
bool Sensor :: get_flag_sensor_value_is_valid() {
return this->flag_sensor_value_is_valid;
}
void Sensor :: set_flag_sensor_value_has_changed(bool flag_sensor_value_has_changed) {
this->flag_sensor_value_has_changed = flag_sensor_value_has_changed;
}
bool Sensor :: get_flag_sensor_value_has_changed() {
return this->flag_sensor_value_has_changed;
}
/*
void Sensor :: set_sensor_id(unsigned int id) {
sensor_id = id;
}
unsigned int Sensor :: get_sensor_id() {
return sensor_id;
}*/
void Sensor :: set_active_state_flag(bool flag) {
active_state_flag = flag;
}
bool Sensor :: get_active_state_flag() {
return active_state_flag;
}
/*
void Sensor :: set_number_of_scores (unsigned int number) {
number_of_scores = number;
}
unsigned int Sensor :: get_number_of_scores() {
return number_of_scores;
}
*/
float Sensor :: get_hardcoded_threshold(unsigned int score, unsigned int boundary) {
return hardcoded_thresholds[score][boundary];
}
void Sensor :: set_hardcoded_threshold(unsigned int score, unsigned int boundary, float value) {
hardcoded_thresholds[score][boundary] = value;
}
float Sensor :: get_learned_threshold(unsigned int score, unsigned int boundary) {
return learned_thresholds[score][boundary];
}
void Sensor :: set_learned_threshold(unsigned int score, unsigned int boundary, float value) {
learned_thresholds[score][boundary] = value;
}
void Sensor :: set_flag_learned_boundary_exist(unsigned int score, unsigned int boundary, bool flag) {
flag_learned_boundary_exist[score][boundary] = flag;
}
bool Sensor :: get_flag_learned_boundary_exist(unsigned int score, unsigned int boundary) {
return flag_learned_boundary_exist[score][boundary];
}
void Sensor :: set_flag_use_learned_data(bool flag) {
flag_use_learned_data = flag;
}
bool Sensor :: get_flag_use_learned_data() {
return flag_use_learned_data;
}
diff --git a/Version_Max_07_05_2018_CMake/src/SlaveAgentHandlerOfAgent.cpp b/Version_Max_07_05_2018_CMake/src/SlaveAgentHandlerOfAgent.cpp
index db9ec85..b7760f9 100755
--- a/Version_Max_07_05_2018_CMake/src/SlaveAgentHandlerOfAgent.cpp
+++ b/Version_Max_07_05_2018_CMake/src/SlaveAgentHandlerOfAgent.cpp
@@ -1,226 +1,231 @@
#include "SlaveAgentHandlerOfAgent.h"
#include "instruction_set_architecture.h"
#include <stdio.h>
#include "printError.h"
#include <algorithm>
#define MAXNUMOF_MOUNTEDSENSORS 100
+//#define PRINT
+
+
using namespace std;
SlaveAgentHandlerOfAgent :: SlaveAgentHandlerOfAgent() {
initSlaveAgentHandler();
}
void SlaveAgentHandlerOfAgent :: initSlaveAgentHandler() {
maxNumOfMountedSlaveAgents = MAXNUMOF_MOUNTEDSENSORS;
}
bool SlaveAgentHandlerOfAgent :: mount_slaveAgentIntoSlaveAgentSlot(Channel* inputPort) {
SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent = new SlaveAgentSlotOfAgent();
if(slaveAgentSlotOfAgent != NULL) {
if(slaveAgentSlotOfAgent->set_comPort(inputPort)) {
if(vMountedSlaveAgents.size() < maxNumOfMountedSlaveAgents) {
try {
vMountedSlaveAgents.push_back(slaveAgentSlotOfAgent);
}
catch(bad_alloc& error) {
printError("bad_alloc caught: ", error.what());
delete slaveAgentSlotOfAgent;
return false;
}
}
else {
printError("Max number of mounted slaveAgents is already reached!");
delete slaveAgentSlotOfAgent;
return false;
}
return true;
}
else {
printError("Input port is no set!");
vMountedSlaveAgents.pop_back(); //TODO: check if it is right?!?!
delete slaveAgentSlotOfAgent;
return false;
}
}
else {
printError("Couldn't create SlaveAgentSlot!");
return false;
}
}
//TODO: what to do when 2 slaveAgentSlots have the same inputPort??!!
SlaveAgentSlotOfAgent* SlaveAgentHandlerOfAgent :: get_slaveAgentSlotAddress(Channel* inputPort) {
for(auto &slaveAgentSlot : vMountedSlaveAgents) {
if(slaveAgentSlot->get_comPort() == inputPort) {
return slaveAgentSlot;
}
}
return NULL;
}
//TODO: what to do when 2 slaveAgentSlots have the same inputPort??!!
//TODO: case if slot with comPort is not in this vector
unsigned int SlaveAgentHandlerOfAgent :: get_slaveAgentSlotNumber(Channel* inputPort) {
unsigned int slotNumber = 0;
for(auto &slaveAgentSlot : vMountedSlaveAgents) {
if(slaveAgentSlot->get_comPort() == inputPort) {
return slotNumber;
}
slotNumber++;
}
return NULL;
}
//TODO: what to do when 2 slaveAgentSlots have the same historyModule??!!
SlaveAgentSlotOfAgent* SlaveAgentHandlerOfAgent :: get_slaveAgentSlotAddress(HistoryModule* historyModule) {
for(auto &slaveAgentSlot : vMountedSlaveAgents) {
if(slaveAgentSlot->get_historyModule() == historyModule) {
return slaveAgentSlot;
}
}
return NULL;
}
//TODO: what to do when 2 slaveAgentSlots have the same confidenceModule??!!
SlaveAgentSlotOfAgent* SlaveAgentHandlerOfAgent :: get_slaveAgentSlotAddress(ConfidenceModule* confidenceModule) {
for(auto &slaveAgentSlot : vMountedSlaveAgents) {
if(slaveAgentSlot->get_confidenceModule() == confidenceModule) {
return slaveAgentSlot;
}
}
return NULL;
}
bool SlaveAgentHandlerOfAgent :: demount_slaveAgentIntoSlaveAgentSlot(Channel* inputPort) {
vMountedSlaveAgents.erase(vMountedSlaveAgents.begin() + get_slaveAgentSlotNumber(inputPort));
return false;
}
//TODO: do it also for integer variables
bool SlaveAgentHandlerOfAgent :: read_slaveAgentValue(SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent) {
if(slaveAgentSlotOfAgent != NULL) {
Channel* channel = slaveAgentSlotOfAgent->get_comPort();
if(channel != NULL) {
int msg;
if(channel->get_MsgUp(&msg)) {
if(msg == ISA_SensoryData) {
//printf("got msg: \n");
float inputValue;
if(channel->get_MsgUp(&inputValue)) {
slaveAgentSlotOfAgent->setSlaveAgentValue(inputValue);
//printf("got value: %f\n", inputValue);
return true;
}
}
}
}
}
return false;
}
bool SlaveAgentHandlerOfAgent :: read_allSlaveAgentValues() {
bool flag_readSlaveAgent = true;
for(auto &slaveAgentSlot : vMountedSlaveAgents) {
if(!read_slaveAgentValue(slaveAgentSlot)) {
flag_readSlaveAgent = false;
}
}
-
+
+#ifdef PRINT
printf("\n");
+#endif // PRINT
return flag_readSlaveAgent;
}
bool SlaveAgentHandlerOfAgent :: attach_historyModule(Channel* inputPort, HistoryModule* historyModule) {
SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent = get_slaveAgentSlotAddress(inputPort);
if(slaveAgentSlotOfAgent != NULL) {
return slaveAgentSlotOfAgent->set_historyModule(historyModule);
}
return false;
}
bool SlaveAgentHandlerOfAgent :: detach_historyModule(SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent) {
if(slaveAgentSlotOfAgent != NULL) {
return slaveAgentSlotOfAgent->del_historyModule();
}
return false;
}
bool SlaveAgentHandlerOfAgent :: detach_historyModule(Channel* inputPort) {
SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent = get_slaveAgentSlotAddress(inputPort);
return detach_historyModule(slaveAgentSlotOfAgent);
}
bool SlaveAgentHandlerOfAgent :: detach_historyModule(HistoryModule* historyModule) {
SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent = get_slaveAgentSlotAddress(historyModule);
return detach_historyModule(slaveAgentSlotOfAgent);
}
HistoryModule* SlaveAgentHandlerOfAgent :: get_historyModuleOfSlaveAgentSlot(Channel* inputPort) {
SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent = get_slaveAgentSlotAddress(inputPort);
return slaveAgentSlotOfAgent->get_historyModule();
}
bool SlaveAgentHandlerOfAgent :: attach_confidenceModule(Channel* inputPort, ConfidenceModule* confidenceModule) {
SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent = get_slaveAgentSlotAddress(inputPort);
if(slaveAgentSlotOfAgent != NULL) {
return slaveAgentSlotOfAgent->set_confidenceModule(confidenceModule);
}
return false;
}
bool SlaveAgentHandlerOfAgent :: detach_confidenceModule(SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent) {
if(slaveAgentSlotOfAgent != NULL) {
return slaveAgentSlotOfAgent->del_confidenceModule();
}
return false;
}
bool SlaveAgentHandlerOfAgent :: detach_confidenceModule(Channel* inputPort) {
SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent = get_slaveAgentSlotAddress(inputPort);
return detach_confidenceModule(slaveAgentSlotOfAgent);
}
bool SlaveAgentHandlerOfAgent :: detach_confidenceModule(ConfidenceModule* confidenceModule) {
SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent = get_slaveAgentSlotAddress(confidenceModule);
return detach_confidenceModule(slaveAgentSlotOfAgent);
}
ConfidenceModule* SlaveAgentHandlerOfAgent :: get_confidenceModuleOfSlaveAgentSlot(Channel* inputPort) {
SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent = get_slaveAgentSlotAddress(inputPort);
return slaveAgentSlotOfAgent->get_confidenceModule();
}
vector<SlaveAgentSlotOfAgent*>* SlaveAgentHandlerOfAgent :: get_vMountedSlaveAgents() {
return &vMountedSlaveAgents;
}
bool SlaveAgentHandlerOfAgent::saveValueInHistory(SlaveAgentSlotOfAgent* slaveAgentSlotOfAgent) {
if (slaveAgentSlotOfAgent != NULL) {
//TODO: change this hardcoded value //Zeitfenster Sliding Window!!!!
while (slaveAgentSlotOfAgent->getHistoryLength() >= 10) {
slaveAgentSlotOfAgent->deleteOldestHistoryEntry();
}
//JUST FOR TESTING
//slaveAgentSlotOfAgent->printHistory();
return slaveAgentSlotOfAgent->saveValueInHistory();
}
return false;
}
bool SlaveAgentHandlerOfAgent::saveAllValuesInHistory() {
bool flagSavingSuccesful = true;
for (auto &slaveAgentSlot : vMountedSlaveAgents) {
if (!saveValueInHistory(slaveAgentSlot)) {
flagSavingSuccesful = false;
}
}
return flagSavingSuccesful;
}
diff --git a/Version_Max_07_05_2018_CMake/src/State.cpp b/Version_Max_07_05_2018_CMake/src/State.cpp
index 044cbf9..a98ee91 100755
--- a/Version_Max_07_05_2018_CMake/src/State.cpp
+++ b/Version_Max_07_05_2018_CMake/src/State.cpp
@@ -1,478 +1,487 @@
#include "State.h"
#include "printError.h"
#include "relationChecker.h"
#include "minmaxzeug.h"
#define INJECTIONPARTITIONING 10
+//#define PRINT
+
State::State() {
//discreteAveragePartitionSize = INJECTIONPARTITIONING;
discreteAveragePartitionCounter = 0;
stateIsValid = false;
}
/*
bool State::setDiscreteAveragePartitionSize(unsigned int discreteAveragePartitionSize) {
if (discreteAveragePartitionSize > 0) {
this->discreteAveragePartitionSize = discreteAveragePartitionSize;
return true;
}
return false;
}
unsigned int State::getDiscreteAveragePartitionSize() {
return discreteAveragePartitionSize;
}
*/
bool State::addSubState(vector<SubState*>* vSubStates, SlaveAgentSlotOfAgent* slot) {
SubState* subState = new (nothrow) SubState();
if (subState != NULL) {
subState->setSlot(slot);
try {
vSubStates->push_back(subState);
return true;
}
catch (bad_alloc& error) {
printError("bad_alloc caught: ", error.what());
delete subState;
}
}
return false;
}
bool State::addInputSubState(SlaveAgentSlotOfAgent* slot) {
return addSubState(&vInputSubStates, slot);;
}
bool State::addOutputSubState(SlaveAgentSlotOfAgent* slot) {
return addSubState(&vOutputSubStates, slot);
}
void State::resetDiscreteAveragePartitionCounter() {
discreteAveragePartitionCounter = 0;
}
bool State::addNewdiscreteAveragePartition() {
bool flagWorkedForAll = true;
for (auto &subState : vInputSubStates) {
if (!subState->addNewDiscreteAverage())
flagWorkedForAll = false;
}
for (auto &subState : vOutputSubStates) {
if (!subState->addNewDiscreteAverage())
flagWorkedForAll = false;
}
return flagWorkedForAll;
}
bool State::injectValues(unsigned int discreteAveragePartitionSize) {
bool flagWorkedForAll = true;
if (discreteAveragePartitionCounter == 0) {
for (auto &subState : vInputSubStates) {
subState->deleteLastDiscreteAverageBlockIfNotCompleted(discreteAveragePartitionSize);
}
for (auto &subState : vOutputSubStates) {
subState->deleteLastDiscreteAverageBlockIfNotCompleted(discreteAveragePartitionSize);
}
flagWorkedForAll = addNewdiscreteAveragePartition();
}
if (flagWorkedForAll) {
discreteAveragePartitionCounter++;
// XXX - >= or > ??
if (discreteAveragePartitionCounter >= discreteAveragePartitionSize) {
discreteAveragePartitionCounter = 0;
}
for (auto &subState : vInputSubStates) {
if (subState->injectValue())
flagWorkedForAll = false;
}
for (auto &subState : vOutputSubStates) {
if (subState->injectValue())
flagWorkedForAll = false;
}
-
+#ifdef PRINT
printf(" >>> Inject Values (partCounter: %u)\n", discreteAveragePartitionCounter);
+#endif // PRINT
//getchar();
}
return flagWorkedForAll;
}
bool State::injectValuesAndMakeNewDiscreteAveragePartition(unsigned int discreteAveragePartitionSize) {
discreteAveragePartitionCounter = 0;
return injectValues(discreteAveragePartitionSize);
}
bool State::variablesAreRelated(vector<SubState*>* vSubStates, float thresholdToBeRelated) {
bool flagAllValuesAreRelated = true;
for (auto &subState : *vSubStates) {
if (!subState->valueIsRelated(thresholdToBeRelated)) {
flagAllValuesAreRelated = false;
}
}
return flagAllValuesAreRelated;
}
bool State::inputVariablesAreRelated(float thresholdToBeRelated) {
return variablesAreRelated(&vInputSubStates, thresholdToBeRelated);
}
bool State::outputVariablesAreRelated(float thresholdToBeRelated) {
return variablesAreRelated(&vOutputSubStates, thresholdToBeRelated);
}
unsigned int State::getNumOfInjections() {
if (!vInputSubStates.empty()) {
return vInputSubStates.front()->getNumOfInjections();
}
return 0;
}
bool State::checkSubStatesForNotDrifting(vector<SubState*>* vSubStates, unsigned int discreteAveragePartitionSize, unsigned int compareDistanceDiscreteAveragePartition, float thresholdNotDrift) {
for (auto &subState : *vSubStates) {
if (subState->getNumberOfCompletedDiscreteAverageBlocks(discreteAveragePartitionSize) > 1) {
//printf("completed blocks = %u\n", subState->getNumberOfCompletedDiscreteAverageBlocks(discreteAveragePartitionSize));
//getchar();
if (!valueIsRelatedToReferenceValue(subState->getDiscreteAverageOfFirstBlock(discreteAveragePartitionSize), subState->getDiscreteAverageOfLastBlock(discreteAveragePartitionSize), thresholdNotDrift)) {
//if (!valueIsRelatedToReferenceValue(subState->getDiscreteAverageOfBlockBeforeLastBlock(discreteAveragePartitionSize, compareDistanceDiscreteAveragePartition), subState->getDiscreteAverageOfLastBlock(discreteAveragePartitionSize), thresholdNotDrift)) {
return false;
}
}
}
//getchar();
return true;
}
bool State::checkAllVariablesForNotDrifting(unsigned int discreteAveragePartitionSize, unsigned int compareDistanceDiscreteAveragePartition, float thresholdNotDrift) {
return checkSubStatesForNotDrifting(&vInputSubStates, discreteAveragePartitionSize, compareDistanceDiscreteAveragePartition, thresholdNotDrift) && checkSubStatesForNotDrifting(&vOutputSubStates, discreteAveragePartitionSize, compareDistanceDiscreteAveragePartition, thresholdNotDrift);
}
//DATE18
float State::checkSubStatesForDriftingFuzzy(vector<SubState*>* vSubStates, unsigned int discreteAveragePartitionSize, LinearFunctionBlock* Drift) {
float confidenceDriftMax = 0;
for (auto &subState : *vSubStates) {
if (subState->getNumberOfCompletedDiscreteAverageBlocks(discreteAveragePartitionSize) > 1) {
float confidenceDrift = Drift->getY(deviationValueReferenceValue(subState->getDiscreteAverageOfLastBlock(discreteAveragePartitionSize), subState->getDiscreteAverageOfFirstBlock(discreteAveragePartitionSize)));
-
+#ifdef PRINT
printf("confDrift = %f, deviationValueReferenceValue = %f\n", confidenceDrift, deviationValueReferenceValue(subState->getDiscreteAverageOfLastBlock(discreteAveragePartitionSize), subState->getDiscreteAverageOfFirstBlock(discreteAveragePartitionSize)));
-
+#endif // PRINT
if (confidenceDrift > confidenceDriftMax)
confidenceDriftMax = confidenceDrift;
}
}
return confidenceDriftMax;
}
//DATE18
float State::checkAllVariablesForDriftingFuzzy(unsigned int discreteAveragePartitionSize, LinearFunctionBlock* Drift) {
float confidenceDriftInput = checkSubStatesForDriftingFuzzy(&vInputSubStates, discreteAveragePartitionSize, Drift);
float confidenceDriftOutput = checkSubStatesForDriftingFuzzy(&vOutputSubStates, discreteAveragePartitionSize, Drift);
if (confidenceDriftInput > confidenceDriftOutput)
return confidenceDriftInput;
else
return confidenceDriftOutput;
}
//DATE18
float State::variablesAreRelatedFuzzy(vector<SubState*>* vSubStates, LinearFunctionBlock* SameState) {
float confRelatedMin = 1;
for (auto &subState : *vSubStates) {
float confRelated = subState->valueIsRelatedFuzzy(SameState);
+#ifdef PRINT
printf("conf %f\n", confRelated);
-
+#endif // PRINT
if (confRelated < confRelatedMin)
confRelatedMin = confRelated;
}
return confRelatedMin;
}
float State::inputVariablesAreRelatedFuzzy(LinearFunctionBlock* SameState) {
return variablesAreRelatedFuzzy(&vInputSubStates, SameState);
}
float State::outputVariablesAreRelatedFuzzy(LinearFunctionBlock* SameState) {
return variablesAreRelatedFuzzy(&vOutputSubStates, SameState);
}
bool State::insertValueInState(LinearFunctionBlock* FuncBlockConfValStateDev, LinearFunctionBlock* FuncBlockConfInvStateDev, LinearFunctionBlock* FuncBlockConfValStateTime, LinearFunctionBlock* FuncBlockConfInvStateTime, unsigned int historySize, unsigned int discreteAveragePartitionSize) {
//bool insertionWorked = true;
if (discreteAveragePartitionCounter == 0) {
for (auto &subState : vInputSubStates)
subState->deleteLastDiscreteAverageBlockIfNotCompleted(discreteAveragePartitionSize);
for (auto &subState : vOutputSubStates)
subState->deleteLastDiscreteAverageBlockIfNotCompleted(discreteAveragePartitionSize);
//insertionWorked = addNewdiscreteAveragePartition();
addNewdiscreteAveragePartition();
}
discreteAveragePartitionCounter++;
if (discreteAveragePartitionCounter >= discreteAveragePartitionSize)
discreteAveragePartitionCounter = 0;
confValidState = 1;
confInvalidState = 0;
for (auto &subState : vInputSubStates) {
//if (!(subState->insertValueInSubState(FuncBlockConfValStateDev, FuncBlockConfInvStateDev, FuncBlockConfValStateTime, FuncBlockConfInvStateTime, historySize)))
//insertionWorked = false;
subState->insertValueInSubState(FuncBlockConfValStateDev, FuncBlockConfInvStateDev, FuncBlockConfValStateTime, FuncBlockConfInvStateTime, historySize);
confValidState = fuzzyAND(confValidState, subState->getConfidenceValidState());
confInvalidState = fuzzyOR(confInvalidState, subState->getConfidenceInvalidState());
}
for (auto &subState : vOutputSubStates) {
//if (!(subState->insertValueInSubState(FuncBlockConfValStateDev, FuncBlockConfInvStateDev, FuncBlockConfValStateTime, FuncBlockConfInvStateTime, historySize)))
//insertionWorked = false;
subState->insertValueInSubState(FuncBlockConfValStateDev, FuncBlockConfInvStateDev, FuncBlockConfValStateTime, FuncBlockConfInvStateTime, historySize);
confValidState = fuzzyAND(confValidState, subState->getConfidenceValidState());
confInvalidState = fuzzyOR(confInvalidState, subState->getConfidenceInvalidState());
}
-
+#ifdef PRINT
printf("confValidState %f\nconfInvalidState %f\n", confValidState, confInvalidState);
+#endif // PRINT
//getchar();
if (confValidState > confInvalidState) {
+#ifdef PRINT
printf("VALID STATE\n");
+#endif // PRINT
stateIsValid = true;
return true;
}
return false;
//return insertionWorked;
}
bool State::insertValueInState(float confValid, float confInvalid, unsigned int historySize, unsigned int discreteAveragePartitionSize) {
return true;
}
float State::getConfInputVarAreSim2State(LinearFunctionBlock* FuncBlockConfSim2StateDev, LinearFunctionBlock* FuncBlockConfSim2StateTime) {
return getConfVarAreSim2State(&vInputSubStates, FuncBlockConfSim2StateDev, FuncBlockConfSim2StateTime);
}
float State::getConfInputVarAreDif2State(LinearFunctionBlock* FuncBlockConfDif2StateDev, LinearFunctionBlock* FuncBlockConfDif2StateTime) {
return getConfVarAreDif2State(&vInputSubStates, FuncBlockConfDif2StateDev, FuncBlockConfDif2StateTime);
}
float State::getConfOutputVarAreSim2State(LinearFunctionBlock* FuncBlockConfSim2StateDev, LinearFunctionBlock* FuncBlockConfSim2StateTime) {
return getConfVarAreSim2State(&vOutputSubStates, FuncBlockConfSim2StateDev, FuncBlockConfSim2StateTime);
}
float State::getConfOutputVarAreDif2State(LinearFunctionBlock* FuncBlockConfDif2StateDev, LinearFunctionBlock* FuncBlockConfDif2StateTime) {
return getConfVarAreDif2State(&vOutputSubStates, FuncBlockConfDif2StateDev, FuncBlockConfDif2StateTime);
}
unsigned int State::getLengthOfHistory() {
if (!vInputSubStates.empty()) {
+#ifdef PRINT
printf("historyLength: %u\n", vInputSubStates.front()->getSampleHistoryLength());
+#endif // PRINT
return vInputSubStates.front()->getSampleHistoryLength();
}
return 0;
}
bool State::isStateValid() {
return stateIsValid;
}
float State::getConfStateValid() {
return confValidState;
}
float State::getConfStateInvalid() {
return confInvalidState;
}
//new
float State::getConfVarAreSim2State(vector<SubState*>* vSubStates, LinearFunctionBlock* FuncBlockConfSim2StateDev, LinearFunctionBlock* FuncBlockConfSim2StateTime) {
float lowestConfOfAllVarAreRelated = 1;
for (auto &subState : *vSubStates)
lowestConfOfAllVarAreRelated = fuzzyAND(lowestConfOfAllVarAreRelated, subState->getConfVarIsSim2State(FuncBlockConfSim2StateDev, FuncBlockConfSim2StateTime));
return lowestConfOfAllVarAreRelated;
}
float State::getConfVarAreDif2State(vector<SubState*>* vSubStates, LinearFunctionBlock* FuncBlockConfDif2StateDev, LinearFunctionBlock* FuncBlockConfDif2StateTime) {
float highestConfOfAllVarAreNotRelated = 0;
for (auto &subState : *vSubStates)
highestConfOfAllVarAreNotRelated = fuzzyOR(highestConfOfAllVarAreNotRelated, subState->getConfVarIsDif2State(FuncBlockConfDif2StateDev, FuncBlockConfDif2StateTime));
return highestConfOfAllVarAreNotRelated;
}
bool State::delete_All_Input_Substates()
{
SubState* cur_Sub_State;
unsigned int index_cur_Sub_State;
unsigned int size_vInSubStates = vInputSubStates.size();
for(index_cur_Sub_State = 0; index_cur_Sub_State < size_vInSubStates; index_cur_Sub_State++){
cur_Sub_State = vInputSubStates[index_cur_Sub_State];
delete cur_Sub_State;
}
vInputSubStates.clear();
return true; //added by Ali, it is an error in VS.
}
bool State::delete_All_Output_Substates()
{
SubState* cur_Sub_State;
unsigned int index_cur_Sub_State;
unsigned int size_vOutSubStates = vOutputSubStates.size();
for(index_cur_Sub_State = 0; index_cur_Sub_State < size_vOutSubStates; index_cur_Sub_State++){
cur_Sub_State = vOutputSubStates[index_cur_Sub_State];
delete cur_Sub_State;
}
vOutputSubStates.clear();
return true; //added by Ali, it is an error in VS.
}
State::~State()
{
delete_All_Input_Substates();
delete_All_Output_Substates();
}
/*
bool State :: setInjectionPartitioning(unsigned int injectionPartitioning) {
if (injectionPartitioning > 0) {
this->injectionPartitioning = injectionPartitioning;
return true;
}
return false;
}
unsigned int State :: getInjectionPartitioning() {
return injectionPartitioning;
}
bool State :: addDiscreteAveragePartition() {
AverageValue* avg = new AverageValue();
if (avg != NULL) {
try {
vDiscreteAveragePartition.push_back(avg);
return true;
}
catch (bad_alloc& error) {
printError("bad_alloc caught: ", error.what());
delete avg;
}
}
return false;
}
bool State :: injectValue(float value) {
AverageValue* avg = NULL;
continuousStatisticValue.injectAndCalculateExtremeValue(value);
//injectionCounter++;
if (injectionPartitionCounter == 0) {
if (addDiscreteAveragePartition()) {
injectionPartitionCounter++;
avg = vDiscreteAveragePartition.back();
}
}
else {
avg = vDiscreteAveragePartition.back();
}
if (avg != NULL) {
avg->injectAndCalculateAverageValue(value);
if (injectionPartitionCounter > injectionPartitioning) {
injectionPartitionCounter = 0;
}
return true;
}
return false;
}
bool State :: valueIsRelated(float value, float thresholdToAverage) {
float diff;
float avg = continuousStatisticValue.getAverageValue();
printf("value: %f, avg: %f, th: %f\n", value, avg, thresholdToAverage);
if (value > avg)
diff = value - avg;
else
diff = avg - value;
if (diff / avg <= thresholdToAverage)
return true;
return false;
}
bool State :: isNew() {
if (continuousStatisticValue.getInjectedValuesCounter() == 0)
return true;
return false;
}
unsigned int State :: getNumberOfInjections() {
return continuousStatisticValue.getInjectedValuesCounter();
}
void State :: deleteState() {
vDiscreteAveragePartition.swap(vDiscreteAveragePartition);
}
*/
diff --git a/Version_Max_07_05_2018_CMake/src/StateHandler.cpp b/Version_Max_07_05_2018_CMake/src/StateHandler.cpp
index fc2dd89..c3a2fb0 100755
--- a/Version_Max_07_05_2018_CMake/src/StateHandler.cpp
+++ b/Version_Max_07_05_2018_CMake/src/StateHandler.cpp
@@ -1,1790 +1,1814 @@
#include "StateHandler.h"
#include <algorithm>
#include "printError.h"
#include "rlutil.h"
#include "relationChecker.h"
#include "minmaxzeug.h"
#include "file_util.h"
#include <iostream>
#include <ctime>
//CHANGE ALSO BOTH FUZZY FUNCTION!!!
// is used for the history length of the number of values which will be compared
//to the current value
#define MAX_STATE_HISTORY_LENGTH 10 //10
#define STOP_WHEN_BROKEN
//#define STOP_AFTER_BROKEN
//#define STOP_WHEN_DRIFT
//#define STOP_WHEN_STATE_VALID
//TODO: also change also hardcoded value in "SlaveAgentHandlerOfAgent.cpp"
#define SLIDINGWINDOWSIZE 3 //3 //10
#define STABLENUMBER 2 //2 //8
#define STABLETHRESHOLD (float)0.04 //0.4 //0.03
#define RELATEDTHRESHOLD (float)0.08 //0.08
#define INJECTIONPARTITIONING 5
#define CMPDISTANCE 3
#define THDRIFT (float)0.08 //0.8
#define MINNUMTOBEVALIDSTATE 11 //11 //8 //10
//three different status are for the system possible
#define STATUS_BROKEN 1
#define STATUS_DRIFT 2
#define STATUS_OKAY 3
using namespace rlutil;
void StateHandler::initStateHandler() {
flagVariablesWereStable = false;
slidingWindowBufferSize = SLIDINGWINDOWSIZE;
minNumOfRelatedValuesToBeStable = STABLENUMBER;
thresholdToBeStable = STABLETHRESHOLD;
thresholdToBeRelated = RELATEDTHRESHOLD;
discreteAveragePartitionSize = INJECTIONPARTITIONING;
compareDistanceDiscreteAveragePartition = CMPDISTANCE;
thresholdNotDrift = THDRIFT;
minNumToBeValidState = MINNUMTOBEVALIDSTATE;
activeState = NULL;
maxStateHistoryLength = MAX_STATE_HISTORY_LENGTH;
time_t rawtime;
struct tm * timeinfo;
char output_file_name[200];
char datetime[80];
const std::string output_directory_name = ""; // "./output_data_csv/Opel/2018-08-09/"; there is no impact if we change it!
std::string output_file_name_str;
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(datetime, sizeof(datetime), "%Y-%m-%d_%I-%M-%S", timeinfo);
output_file_name_str = output_directory_name + "output" + datetime + ".csv";
cout << output_file_name_str << endl;
//XXX - only for now:
//Ali printf("\n csv_Writer is not NULL, but it is not initialized!! \n");
if (csv_writer == NULL) {
csv_writer = new CSV_Writer("CSV Writer", (char*)output_file_name_str.c_str());
}
//DATE18
confidenceStableInput = 0;
confidenceStableOutput = 0;
confidenceStable = 0;
confStableAdjustableThreshold = 0.5;
confidenceUnstableInput = 0;
confidenceUnstableOutput = 0;
confidenceUnstable = 0;
confidenceUnstableAdjustableThreshold = 0.5;
confidenceSameStateInput = 0;
confSameStateInputAdjustableThreshold = 0.5;
confidenceSameStateOutput = 0;
confSameStateOutputAdjustableThreshold = 0.5;
confidenceValidState = 0;
confValidStateAdjustableThreshold = 0.5;
brokenCounter = 0;
confidenceBroken = 0;
confidenceBrokenAdjustableThreshold = 0.5;
driftCounter = 0;
confidenceDrift = 0;
confidenceDriftAdjustableThreshold = 0.5;
}
StateHandler::StateHandler() {
set_name(NO_NAME);
initStateHandler();
}
StateHandler::StateHandler(char* name) {
set_name(name);
initStateHandler();
}
bool StateHandler::setDiscreteAveragePartitionSize(unsigned int discreteAveragePartitionSize) {
if (discreteAveragePartitionSize > 0) {
this->discreteAveragePartitionSize = discreteAveragePartitionSize;
return true;
}
return false;
}
unsigned int StateHandler::getDiscreteAveragePartitionSize() {
return discreteAveragePartitionSize;
}
bool StateHandler::addVariable(vector<SlaveAgentSlotOfAgent*>* vVariables, SlaveAgentSlotOfAgent* slot) {
if (vVariables != NULL && slot != NULL) {
if (find((*vVariables).begin(), (*vVariables).end(), slot) == (*vVariables).end()) {
try {
(*vVariables).push_back(slot);
return true;
}
catch (bad_alloc& error) {
printError("bad_alloc caught: ", error.what());
}
}
}
return false;
}
bool StateHandler::addInputVariable(SlaveAgentSlotOfAgent* slot) {
return addVariable(&vInputVariables, slot);
}
bool StateHandler::addOutputVariable(SlaveAgentSlotOfAgent* slot) {
return addVariable(&vOutputVariables, slot);
}
bool StateHandler::delete_all_OuputVariables()
{
SlaveAgentSlotOfAgent* cur_sl_ag_sl_ag;
unsigned int index_v_OutVar;
unsigned int size_v_OutVar = vOutputVariables.size();
for(index_v_OutVar = 0; index_v_OutVar < size_v_OutVar; index_v_OutVar++) {
cur_sl_ag_sl_ag = vOutputVariables[index_v_OutVar];
delete cur_sl_ag_sl_ag;
}
vOutputVariables.clear();
return true; //added by Ali, it is an error in VS.
}
bool StateHandler::delete_all_InputVariables()
{
SlaveAgentSlotOfAgent* cur_sl_ag_sl_ag;
unsigned int index_v_InpVar;
unsigned int size_v_InpVar = vInputVariables.size();
for(index_v_InpVar = 0; index_v_InpVar < size_v_InpVar; index_v_InpVar++) {
cur_sl_ag_sl_ag = vInputVariables[index_v_InpVar];
delete cur_sl_ag_sl_ag;
}
vInputVariables.clear();
return true; //added by Ali, it is an error in VS.
}
bool StateHandler::delete_allStates()
{
State* cur_state;
unsigned int index_v_State;
unsigned int size_v_State = vStates.size();
for(index_v_State = 0; index_v_State < size_v_State; index_v_State++) {
cur_state = vStates[index_v_State];
delete cur_state;
}
vStates.clear();
return true; //added by Ali, it is an error in VS.
}
bool StateHandler::setSlidingWindowBufferSize(unsigned int slidingWindowBufferSize) {
if (slidingWindowBufferSize >= minNumOfRelatedValuesToBeStable) {
this->slidingWindowBufferSize = slidingWindowBufferSize;
return true;
}
return false;
}
bool StateHandler::setMinNumOfRelatedValuesToBeStable(unsigned int minNumOfRelatedValuesToBeStable) {
if (minNumOfRelatedValuesToBeStable <= slidingWindowBufferSize) {
this->minNumOfRelatedValuesToBeStable = minNumOfRelatedValuesToBeStable;
return true;
}
return false;
}
bool StateHandler::setThresholdToBeStable(float thresholdToBeStable) {
if (thresholdToBeStable >= 0 && thresholdToBeStable <= 1) {
this->thresholdToBeStable = thresholdToBeStable;
return true;
}
return false;
}
bool StateHandler::setThresholdToBeRelated(float thresholdToBeRelated) {
if (thresholdToBeRelated >= 0 && thresholdToBeRelated <= 1) {
this->thresholdToBeRelated = thresholdToBeRelated;
return true;
}
return false;
}
bool StateHandler::variablesAreStable(vector<SlaveAgentSlotOfAgent*>* vVariables) {
bool flagAllVariablesAreStable = true;
for (auto &slot : *vVariables) {
if (slot->getHistoryLength() >= slidingWindowBufferSize - 1) { //-1 because actual value is not in the history
if (slot->getNumberOfRelativesToActualValue(thresholdToBeStable) < minNumOfRelatedValuesToBeStable) { //-1 because actual value is also on of minNumOfRelatedValuesToBeStable
flagAllVariablesAreStable = false;
}
}
else {
return false;
}
}
return flagAllVariablesAreStable;
}
//Sorting with bigger Value in Front
struct descending
{
template<class T>
bool operator()(T const &a, T const &b) const { return a > b; }
};
//DATE18
float StateHandler::getConfVariableIsStable(SlaveAgentSlotOfAgent* variable) {
float bestConfOf1Var = 0;
float sample;
if (variable->get_slaveAgentValue(&sample)) {
list<float> lHistoryTemporary = variable->getHistory();
vector<float> vDeviations;
for (auto &h : lHistoryTemporary)
vDeviations.push_back(deviationValueReferenceValue(sample, h));
std::sort(std::begin(vDeviations), std::end(vDeviations));
//all adaptabilities within the history of one variable
for (unsigned int numOfHistSamplesIncluded = 1; numOfHistSamplesIncluded <= vDeviations.size(); numOfHistSamplesIncluded++) {
float worstConfOfHistSampleSet = 1;
unsigned int histSampleCounter = 0;
for (auto &deviation : vDeviations) {
if (histSampleCounter >= numOfHistSamplesIncluded)
break;
worstConfOfHistSampleSet = minValueOf2Values(worstConfOfHistSampleSet, StabDeviation->getY(deviation));
histSampleCounter++;
}
bestConfOf1Var = maxValueOf2Values(bestConfOf1Var, minValueOf2Values(worstConfOfHistSampleSet, StabSamples->getY((float)histSampleCounter)));
}
}
return bestConfOf1Var;
}
//DATE18
float StateHandler::getConfVariablesAreStable(vector<SlaveAgentSlotOfAgent*>* vVariables) {
float worstConfOfAllVariables = 1;
for (auto &slot : *vVariables)
worstConfOfAllVariables = minValueOf2Values(worstConfOfAllVariables, getConfVariableIsStable(slot));
return worstConfOfAllVariables;
}
//DATE18
float StateHandler::getConfVariableIsUnstable(SlaveAgentSlotOfAgent* variable) {
float bestConfOf1Var = 0;
float sample;
if (variable->get_slaveAgentValue(&sample)) {
list<float> lHistoryTemporary = variable->getHistory();
vector<float> vDeviations;
for (auto &h : lHistoryTemporary)
vDeviations.push_back(deviationValueReferenceValue(sample, h));
sort(begin(vDeviations), end(vDeviations), descending());
//all adaptabilities within the history of one variable
for (unsigned int numOfHistSamplesIncluded = 1; numOfHistSamplesIncluded <= vDeviations.size(); numOfHistSamplesIncluded++) {
//float bestConfOfHistSampleSet = 1;
float bestConfOfHistSampleSet = 0;
unsigned int histSampleCounter = 0;
for (auto &deviation : vDeviations) {
if (histSampleCounter >= numOfHistSamplesIncluded)
break;
//bestConfOfHistSampleSet = minValueOf2Values(bestConfOfHistSampleSet, UnstabDeviation->getY(deviation));
bestConfOfHistSampleSet = maxValueOf2Values(bestConfOfHistSampleSet, UnstabDeviation->getY(deviation));
histSampleCounter++;
}
bestConfOf1Var = maxValueOf2Values(bestConfOf1Var, minValueOf2Values(bestConfOfHistSampleSet, StabSamples->getY((float)histSampleCounter)));
}
}
return bestConfOf1Var;
}
//DATE18 - Is there one unstable variable?
float StateHandler::getConfVariablesAreUnstable(vector<SlaveAgentSlotOfAgent*>* vVariables) {
float bestConfOfAllVariables = 0;
for (auto &slot : *vVariables)
bestConfOfAllVariables = maxValueOf2Values(bestConfOfAllVariables, getConfVariableIsUnstable(slot));
return bestConfOfAllVariables;
}
bool StateHandler::getConfAndUnconfVariableIsMatching(State* state, LinearFunctionBlock* confDeviation, LinearFunctionBlock* confTime, float* conf, float* unconf) {
float bestUnconfOf1Var = 0;
float worstConfOf1Var = 1;
if (state != NULL) {
}
/*
float sample;
if (variable->get_slaveAgentValue(&sample)) {
list<float> lHistoryTemporary = variable->getHistory();
vector<float> vDeviations;
for (auto &h : lHistoryTemporary)
vDeviations.push_back(deviationValueReferenceValue(sample, h));
sort(begin(vDeviations), end(vDeviations), descending());
//all adaptabilities within the history of one variable
for (unsigned int numOfHistSamplesIncluded = 1; numOfHistSamplesIncluded <= vDeviations.size(); numOfHistSamplesIncluded++) {
//float bestConfOfHistSampleSet = 1;
float bestConfOfHistSampleSet = 0;
unsigned int histSampleCounter = 0;
for (auto &deviation : vDeviations) {
if (histSampleCounter >= numOfHistSamplesIncluded)
break;
//bestConfOfHistSampleSet = minValueOf2Values(bestConfOfHistSampleSet, UnstabDeviation->getY(deviation));
bestConfOfHistSampleSet = maxValueOf2Values(bestConfOfHistSampleSet, UnstabDeviation->getY(deviation));
histSampleCounter++;
}
bestConfOf1Var = maxValueOf2Values(bestConfOf1Var, minValueOf2Values(bestConfOfHistSampleSet, StabSamples->getY((float)histSampleCounter)));
}
}
return bestConfOf1Var;
*/
return 0;
}
/*
bool StateHandler::getConfAndUnconfVariablesAreMatching(vector<SlaveAgentSlotOfAgent*>* vVariables, LinearFunctionBlock* confDeviation, LinearFunctionBlock* confTime, float* conf, float* unconf) {
float bestUnconfOfAllVariables = 0;
float worstConfOfAllVariables = 1;
for (auto &variable :* vVariables) {
bestUnconfOfAllVariables = maxValueOf2Values(bestUnconfOfAllVariables, getConfAndUnconfVariableIsMatching(variable, confDeviation, confTime, conf, unconf));
worstConfOfAllVariables = minValueOf2Values(worstConfOfAllVariables, getConfAndUnconfVariableIsMatching(variable, confDeviation, confTime, conf, unconf));
}
*conf = worstConfOfAllVariables;
*unconf = bestUnconfOfAllVariables;
return true;
}
*/
State* StateHandler::makeNewState() {
State* state = new (nothrow) State();
if (state != NULL) {
bool flagLoadVariablesWorked = true;
for (auto &slot : vInputVariables) {
if (!state->addInputSubState(slot))
flagLoadVariablesWorked = false;
}
for (auto &slot : vOutputVariables) {
if (!state->addOutputSubState(slot))
flagLoadVariablesWorked = false;
}
if (!flagLoadVariablesWorked) {
delete state;
return NULL;
}
}
else {
return NULL;
}
return state;
}
bool StateHandler::addActiveStateToStateVector() {
-
+#ifdef PRINT
printf(" >> Save Active State\n");
-
+#endif //PRINT
if (activeState != NULL) {
for (auto &state : vStates) {
if (state == activeState)
return true;
}
#ifdef STOP_WHEN_STATE_VALID
getchar();
#endif // STOP_WHEN_STATE_VALID
try {
vStates.push_back(activeState);
return true;
}
catch (bad_alloc& error) {
printError("bad_alloc caught: ", error.what());
delete activeState;
}
}
return false;
}
/*
bool StateHandler::addStateAndMakeItActive() {
State* state = addState();
if (state != NULL) {
activeState = state;
return true;
}
return false;
}
*/
bool StateHandler::makeNewActiveState() {
State* state = makeNewState();
if (state != NULL) {
activeState = state;
return true;
}
return false;
}
State* StateHandler::findRelatedState() {
for (auto &state : vStates) {
if (state->inputVariablesAreRelated(thresholdToBeRelated) && state->outputVariablesAreRelated(thresholdToBeRelated)) {
return state;
}
}
return NULL;
}
bool StateHandler::findRelatedStateAndMakeItActive() {
State* state = findRelatedState();
if (state != NULL) {
activeState = state;
return true;
}
return false;
}
void StateHandler::eraseStatesWithLessInjections() {
if (activeState != NULL) {
if (activeState->getNumOfInjections() < minNumToBeValidState) {
activeState = NULL;
}
}
for (vector<State*>::iterator state = vStates.begin(); state < vStates.end(); state++) {
if ((*state)->getNumOfInjections() < minNumToBeValidState) {
//TODO: also delete all subStates (etc.) of the State? Because: Memory Leakage.
vStates.erase(state);
state--;
}
}
/*
for (auto &state : vStates) {
//TODO: also delete all subStates (etc.) of the State? Because: Memory Leakage.
if (state->getNumOfInjections() < minNumToBeValidState) {
vStates.erase(state);
}
}
*/
}
void StateHandler :: reset_States()
{
this->delete_allStates();
this->activeState = NULL;
}
void StateHandler :: reset_States_and_Slave_Agents()
{
reset_States();
this->delete_all_InputVariables();
this->delete_all_OuputVariables();
}
StateHandler :: ~StateHandler()
{
delete_all_OuputVariables();
delete_all_InputVariables();
delete_allStates();
//delete csv_writer;
}
//XXX - only for now
bool test = true;
unsigned int brokenCounter = 0, driftCounter = 0;
void printDrift() {
driftCounter++;
setColor(TXTCOLOR_YELLOW);
printf(" >> DRIFT\n");
setColor(TXTCOLOR_GREY);
test = true;
}
void printBroken() {
brokenCounter++;
setColor(TXTCOLOR_LIGHTRED);
printf(" >> BROKEN\n");
setColor(TXTCOLOR_GREY);
test = true;
}
//XXX - only for now
unsigned int old_cycle = 1;
int brokentest = 0;
/*
* makes a new state and reports if there is a anomaly = hearth piece of CAM :-)
*/
void StateHandler::trigger(unsigned int cycle) {
+
+#ifdef PRINT
printf("cycle: %u\n", cycle);
-
+#endif // PRINT
+
bool flagGotValues = true;
+#ifdef PRINT
printf("Input Sample Values:\n");
+#endif // PRINT
for (auto &slot : vInputVariables) {
float sampleValue;
if (!(slot->get_slaveAgentValue(&sampleValue)))
flagGotValues = false; //program never executes this line of code
+#ifdef PRINT
printf("In, %s: %f\n", slot->get_comPort()->get_name(), sampleValue);
+#endif // PRINT
if (cycle == 1)
csv_writer->write_field(slot->get_comPort()->get_name());
else
csv_writer->write_field(sampleValue);
csv_writer->make_new_field();
}
+#ifdef PRINT
printf("Output Sample Values:\n");
+#endif // PRINT
for (auto &slot : vOutputVariables) {
float sampleValue;
if (!(slot->get_slaveAgentValue(&sampleValue)))
flagGotValues = false; //program never executes this line of code
+#ifdef PRINT
printf("Out, %s: %f\n", slot->get_comPort()->get_name(), sampleValue);
+#endif // PRINT
if (cycle == 1)
csv_writer->write_field(slot->get_comPort()->get_name());
else
csv_writer->write_field(sampleValue);
csv_writer->make_new_field();
}
if (cycle == 1){
csv_writer->write_field("State Nr");
csv_writer->make_new_field();
csv_writer->write_field("Conf State Valid");
csv_writer->make_new_field();
csv_writer->write_field("Conf State Invalid");
csv_writer->make_new_field();
csv_writer->write_field("Conf Input unchanged");
csv_writer->make_new_field();
csv_writer->write_field("Conf Input changed");
csv_writer->make_new_field();
csv_writer->write_field("Conf Output unchanged");
csv_writer->make_new_field();
csv_writer->write_field("Conf Output changed");
csv_writer->make_new_field();
csv_writer->write_field("Status");
csv_writer->make_new_field();
csv_writer->write_field("Conf Status");
csv_writer->make_new_field();
}
else {
//in the beginning, a active state has to be created
if (activeState == NULL && vStates.empty()) {
brokenCounter = 0;
-
+#ifdef PRINT
printf(" > new active state\n");
+#endif // PRINT
makeNewActiveState();
if (activeState->insertValueInState(FuncBlockConfValStateDev, FuncBlockConfInvStateDev, FuncBlockConfValStateTime, FuncBlockConfInvStateTime, maxStateHistoryLength, discreteAveragePartitionSize))
addActiveStateToStateVector();
//NEW - Adjust FuncBlockConfSim2StateTime and FuncBlockConfDif2StateTime
float newBoundary = (float)activeState->getLengthOfHistory();
FuncBlockConfSim2StateTime->changeFunctionBlockIncr(newBoundary);
FuncBlockConfDif2StateTime->changeFunctionBlockDecr(newBoundary);
csv_writer->write_field((int)vStates.size() + 1);
csv_writer->make_new_field();
csv_writer->write_field(activeState->getConfStateValid());
csv_writer->make_new_field();
csv_writer->write_field(activeState->getConfStateInvalid());
csv_writer->make_new_field();
csv_writer->write_field(0); //confInputVarAreSim2ActiveState
csv_writer->make_new_field();
csv_writer->write_field(0); //confInputVarAreDif2ActiveState
csv_writer->make_new_field();
csv_writer->write_field(0); //confOutputVarAreSim2ActiveState
csv_writer->make_new_field();
csv_writer->write_field(0); //confOutputVarAreDif2ActiveState
csv_writer->make_new_field();
csv_writer->write_field(STATUS_OKAY);
csv_writer->make_new_field();
csv_writer->write_field(0); //Status Conf
csv_writer->make_new_field();
}
//there is an active state and/or other states
else {
float confInputVarAreSim2ActiveState = activeState->getConfInputVarAreSim2State(FuncBlockConfSim2StateDev, FuncBlockConfSim2StateTime);
float confInputVarAreDif2ActiveState = activeState->getConfInputVarAreDif2State(FuncBlockConfDif2StateDev, FuncBlockConfDif2StateTime);
float confOutputVarAreSim2ActiveState = activeState->getConfOutputVarAreSim2State(FuncBlockConfSim2StateDev, FuncBlockConfSim2StateTime);
float confOutputVarAreDif2ActiveState = activeState->getConfOutputVarAreDif2State(FuncBlockConfDif2StateDev, FuncBlockConfDif2StateTime);
float confInputIsSteady = confInputVarAreSim2ActiveState - confInputVarAreDif2ActiveState;
float confOutputIsSteady = confOutputVarAreSim2ActiveState - confOutputVarAreDif2ActiveState;
printf("input (sim/dif) %f/%f\noutput (sim/dif) %f/%f\n", confInputVarAreSim2ActiveState, confInputVarAreDif2ActiveState, confOutputVarAreSim2ActiveState, confOutputVarAreDif2ActiveState);
//same state
if ((confInputVarAreSim2ActiveState > confInputVarAreDif2ActiveState) && (confOutputVarAreSim2ActiveState > confOutputVarAreDif2ActiveState)) {
brokenCounter = 0;
-
+#ifdef PRINT
printf(" > same state\n");
+
+ //printf("\nPROOF:\nconfInputVarAreSim2ActiveState = %f\nconfInputVarAreDif2ActiveState = %f\nconfOutputVarAreSim2ActiveState = %f\nconfOutputVarAreDif2ActiveState = %f\n", confInputVarAreSim2ActiveState, confInputVarAreDif2ActiveState, confOutputVarAreSim2ActiveState, confOutputVarAreDif2ActiveState);
+#endif // PRINT
if (activeState->insertValueInState(FuncBlockConfValStateDev, FuncBlockConfInvStateDev, FuncBlockConfValStateTime, FuncBlockConfInvStateTime, maxStateHistoryLength, discreteAveragePartitionSize))
addActiveStateToStateVector();
//NEW - Adjust FuncBlockConfSim2StateTime and FuncBlockConfDif2StateTime
float newBoundary = (float)activeState->getLengthOfHistory();
FuncBlockConfSim2StateTime->changeFunctionBlockIncr(newBoundary);
FuncBlockConfDif2StateTime->changeFunctionBlockDecr(newBoundary);
//print state number
if(activeState->isStateValid())
csv_writer->write_field((int)vStates.size());
else
csv_writer->write_field((int)vStates.size()+1);
csv_writer->make_new_field();
//print conf valid
csv_writer->write_field(activeState->getConfStateValid());
csv_writer->make_new_field();
csv_writer->write_field(activeState->getConfStateInvalid());
csv_writer->make_new_field();
//print conf statechange
csv_writer->write_field(confInputVarAreSim2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confInputVarAreDif2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confOutputVarAreSim2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confOutputVarAreDif2ActiveState);
csv_writer->make_new_field();
confidenceDrift = activeState->checkAllVariablesForDriftingFuzzy(discreteAveragePartitionSize, DriftDeviation);
float confidenceNoDrift = 1 - confidenceDrift;
/*
//print conf drift
csv_writer->write_field(confidenceNoDrift);
csv_writer->make_new_field();
csv_writer->write_field(confidenceDrift);
csv_writer->make_new_field();
*/
if (confidenceDrift > 0.5) {
+#ifdef PRINT
setColor(TXTCOLOR_YELLOW);
printf("DRIFT\n");
+ setColor(TXTCOLOR_GREY);
+#endif // PRINT
#ifdef STOP_WHEN_DRIFT
getchar();
#endif // STOP_WHEN_DRIFT
setColor(TXTCOLOR_GREY);
//print drift
csv_writer->write_field(STATUS_DRIFT);
csv_writer->make_new_field();
//calc and print conf
float conf = fuzzyAND(fuzzyAND(confidenceDrift, activeState->getConfStateValid()), fuzzyAND(confInputVarAreSim2ActiveState, confOutputVarAreSim2ActiveState));
csv_writer->write_field(conf);
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTGREEN);
printf("OK\n");
setColor(TXTCOLOR_GREY);
+#endif // PRINT
//print ok
csv_writer->write_field(STATUS_OKAY);
csv_writer->make_new_field();
//calc and print conf
float conf = fuzzyAND(fuzzyAND(confInputVarAreSim2ActiveState, confOutputVarAreSim2ActiveState), fuzzyAND(activeState->getConfStateValid(), confidenceNoDrift));
csv_writer->write_field(conf);
}
csv_writer->make_new_field();
}
//state change
else {
//was Valid
if (activeState->isStateValid()) {
//only one sub set changed
if (((confInputVarAreSim2ActiveState > confInputVarAreDif2ActiveState) && (confOutputVarAreSim2ActiveState <= confOutputVarAreDif2ActiveState)) || ((confInputVarAreSim2ActiveState <= confInputVarAreDif2ActiveState) && (confOutputVarAreSim2ActiveState > confOutputVarAreDif2ActiveState))) {
//print state number
if (activeState->isStateValid())
csv_writer->write_field((int)vStates.size());
else
csv_writer->write_field((int)vStates.size() + 1);
csv_writer->make_new_field();
//print conf valid
csv_writer->write_field(activeState->getConfStateValid());
csv_writer->make_new_field();
csv_writer->write_field(activeState->getConfStateInvalid());
csv_writer->make_new_field();
//print conf statechange
csv_writer->write_field(confInputVarAreSim2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confInputVarAreDif2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confOutputVarAreSim2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confOutputVarAreDif2ActiveState);
csv_writer->make_new_field();
brokenCounter++;
printf("brokenCounter: %u\n", brokenCounter);
confidenceBroken = FuncBlockConfBrokenSamples->getY((float) brokenCounter);
float confidenceOK = 1 - confidenceBroken;
if (confidenceBroken > 0.5) {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf("BROKEN\n");
setColor(TXTCOLOR_GREY);
+#endif // PRINT
#ifdef STOP_AFTER_BROKEN
brokentest = 1;
#endif // STOP_AFTER_BROKEN
#ifdef STOP_WHEN_BROKEN
getchar();
#endif // STOP_WHEN_BROKEN
//print broken
csv_writer->write_field(STATUS_BROKEN);
csv_writer->make_new_field();
//calculate and print conf
float conf = fuzzyAND(fuzzyOR(confInputVarAreDif2ActiveState, confOutputVarAreDif2ActiveState), fuzzyAND(confidenceBroken, activeState->getConfStateValid()));
csv_writer->write_field(conf);
//csv_writer->make_new_field();
}
else {
//print ok
csv_writer->write_field(STATUS_OKAY);
csv_writer->make_new_field();
//calculate and print conf
float conf = fuzzyAND(fuzzyOR(fuzzyAND(confInputVarAreSim2ActiveState, confOutputVarAreSim2ActiveState), fuzzyAND(confInputVarAreDif2ActiveState, confOutputVarAreDif2ActiveState)), fuzzyAND(confidenceOK, activeState->getConfStateValid()));
csv_writer->write_field(conf);
}
}
//In- and output changed
else {
brokenCounter = 0;
printf(" > delete active state\n");
activeState = NULL;
printf(" > new active state\n");
// search in vector for matching state //TODO in future: look for the best matching, Not for the first matching
bool flagFoundMatchingState = false;
float confInputVarAreSim2ActiveState;
float confInputVarAreDif2ActiveState;
float confOutputVarAreSim2ActiveState;
float confOutputVarAreDif2ActiveState;
for (auto &state : vStates) {
confInputVarAreSim2ActiveState = state->getConfInputVarAreSim2State(FuncBlockConfSim2StateDev, FuncBlockConfSim2StateTime);
confInputVarAreDif2ActiveState = state->getConfInputVarAreDif2State(FuncBlockConfDif2StateDev, FuncBlockConfDif2StateTime);
confOutputVarAreSim2ActiveState = state->getConfOutputVarAreSim2State(FuncBlockConfSim2StateDev, FuncBlockConfSim2StateTime);
confOutputVarAreDif2ActiveState = state->getConfOutputVarAreDif2State(FuncBlockConfDif2StateDev, FuncBlockConfDif2StateTime);
if ((confInputVarAreSim2ActiveState > confInputVarAreDif2ActiveState) && (confOutputVarAreSim2ActiveState > confOutputVarAreDif2ActiveState)) {
activeState = state;
flagFoundMatchingState = true;
}
}
if (flagFoundMatchingState == false) {
makeNewActiveState();
confInputVarAreSim2ActiveState = 0;
confInputVarAreDif2ActiveState = 0;
confOutputVarAreSim2ActiveState = 0;
confOutputVarAreDif2ActiveState = 0;
}
//insert in activeState
if (activeState->insertValueInState(FuncBlockConfValStateDev, FuncBlockConfInvStateDev, FuncBlockConfValStateTime, FuncBlockConfInvStateTime, maxStateHistoryLength, discreteAveragePartitionSize))
addActiveStateToStateVector();
//NEW - Adjust FuncBlockConfSim2StateTime and FuncBlockConfDif2StateTime
float newBoundary = (float)activeState->getLengthOfHistory();
FuncBlockConfSim2StateTime->changeFunctionBlockIncr(newBoundary);
FuncBlockConfDif2StateTime->changeFunctionBlockDecr(newBoundary);
//print state number
if (activeState->isStateValid())
csv_writer->write_field((int)vStates.size());
else
csv_writer->write_field((int)vStates.size() + 1);
csv_writer->make_new_field();
//print conf valid
csv_writer->write_field(activeState->getConfStateValid());
csv_writer->make_new_field();
csv_writer->write_field(activeState->getConfStateInvalid());
csv_writer->make_new_field();
//print conf statechange
csv_writer->write_field(confInputVarAreSim2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confInputVarAreDif2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confOutputVarAreSim2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confOutputVarAreDif2ActiveState);
csv_writer->make_new_field();
confidenceDrift = activeState->checkAllVariablesForDriftingFuzzy(discreteAveragePartitionSize, DriftDeviation);
float confidenceNoDrift = 1 - confidenceDrift;
if (confidenceDrift > 0.5) {
setColor(TXTCOLOR_YELLOW);
printf("DRIFT\n");
#ifdef STOP_WHEN_DRIFT
getchar();
#endif // STOP_WHEN_DRIFT
setColor(TXTCOLOR_GREY);
//print drift
csv_writer->write_field(STATUS_DRIFT);
csv_writer->make_new_field();
//calc and print conf
float conf = fuzzyAND(confidenceDrift, activeState->getConfStateValid());
csv_writer->write_field(conf);
}
else {
setColor(TXTCOLOR_LIGHTGREEN);
printf("OK\n");
setColor(TXTCOLOR_GREY);
//print ok
csv_writer->write_field(STATUS_OKAY);
csv_writer->make_new_field();
//calc and print conf
float conf = fuzzyAND(fuzzyAND(confInputVarAreDif2ActiveState, confOutputVarAreDif2ActiveState), fuzzyAND(activeState->getConfStateValid(), confidenceNoDrift));
csv_writer->write_field(conf);
}
csv_writer->make_new_field();
}
}
//was NOT Valid
else {
brokenCounter = 0;
printf(" > delete active state\n");
delete activeState;
activeState = NULL;
printf(" > new active state\n");
// search in vector for matching state //TODO in future: look for the best matching, Not for the first matching
bool flagFoundMatchingState = false;
float confInputVarAreSim2ActiveState;
float confInputVarAreDif2ActiveState;
float confOutputVarAreSim2ActiveState;
float confOutputVarAreDif2ActiveState;
for (auto &state : vStates) {
confInputVarAreSim2ActiveState = state->getConfInputVarAreSim2State(FuncBlockConfSim2StateDev, FuncBlockConfSim2StateTime);
confInputVarAreDif2ActiveState = state->getConfInputVarAreDif2State(FuncBlockConfDif2StateDev, FuncBlockConfDif2StateTime);
confOutputVarAreSim2ActiveState = state->getConfOutputVarAreSim2State(FuncBlockConfSim2StateDev, FuncBlockConfSim2StateTime);
confOutputVarAreDif2ActiveState = state->getConfOutputVarAreDif2State(FuncBlockConfDif2StateDev, FuncBlockConfDif2StateTime);
if ((confInputVarAreSim2ActiveState > confInputVarAreDif2ActiveState) && (confOutputVarAreSim2ActiveState > confOutputVarAreDif2ActiveState)) {
activeState = state;
flagFoundMatchingState = true;
}
}
if (flagFoundMatchingState == false) {
makeNewActiveState();
confInputVarAreSim2ActiveState = 0;
confInputVarAreDif2ActiveState = 0;
confOutputVarAreSim2ActiveState = 0;
confOutputVarAreDif2ActiveState = 0;
}
//insert in active state
if (activeState->insertValueInState(FuncBlockConfValStateDev, FuncBlockConfInvStateDev, FuncBlockConfValStateTime, FuncBlockConfInvStateTime, maxStateHistoryLength, discreteAveragePartitionSize))
addActiveStateToStateVector();
//NEW - Adjust FuncBlockConfSim2StateTime and FuncBlockConfDif2StateTime
float newBoundary = (float)activeState->getLengthOfHistory();
FuncBlockConfSim2StateTime->changeFunctionBlockIncr(newBoundary);
FuncBlockConfDif2StateTime->changeFunctionBlockDecr(newBoundary);
//print state number
if (activeState->isStateValid())
csv_writer->write_field((int)vStates.size());
else
csv_writer->write_field((int)vStates.size() + 1);
csv_writer->make_new_field();
//print conf valid
csv_writer->write_field(activeState->getConfStateValid());
csv_writer->make_new_field();
csv_writer->write_field(activeState->getConfStateInvalid());
csv_writer->make_new_field();
//print conf statechange
csv_writer->write_field(confInputVarAreSim2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confInputVarAreDif2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confOutputVarAreSim2ActiveState);
csv_writer->make_new_field();
csv_writer->write_field(confOutputVarAreDif2ActiveState);
csv_writer->make_new_field();
confidenceDrift = activeState->checkAllVariablesForDriftingFuzzy(discreteAveragePartitionSize, DriftDeviation);
float confidenceNoDrift = 1 - confidenceDrift;
if (confidenceDrift > 0.5) {
setColor(TXTCOLOR_YELLOW);
printf("DRIFT\n");
#ifdef STOP_WHEN_DRIFT
getchar();
#endif // STOP_WHEN_DRIFT
setColor(TXTCOLOR_GREY);
//print drift
csv_writer->write_field(2);
csv_writer->make_new_field();
//calc and print conf
float conf = fuzzyAND(confidenceDrift, activeState->getConfStateValid());
csv_writer->write_field(conf);
}
else {
setColor(TXTCOLOR_LIGHTGREEN);
printf("OK\n");
setColor(TXTCOLOR_GREY);
//print ok
csv_writer->write_field(STATUS_OKAY);
csv_writer->make_new_field();
//calc and print conf
float conf = fuzzyAND(fuzzyAND(confInputVarAreDif2ActiveState, confOutputVarAreDif2ActiveState), fuzzyAND(activeState->getConfStateValid(), confidenceNoDrift));
csv_writer->write_field(conf);
}
csv_writer->make_new_field();
}
}
+#ifdef PRINT
printf("STATES: %u\n", vStates.size());
+#endif // PRINT
}
}
csv_writer->make_new_line();
if (brokentest)
getchar();
/*
//XXX - only for now
for (unsigned int i = 1; i < (cycle - old_cycle); i++) {
csv_writer->make_new_field();
csv_writer->make_new_field();
csv_writer->make_new_field();
csv_writer->make_new_line();
//printf("%u\n", i);
}
old_cycle = cycle;
confidenceStableInput = getConfVariablesAreStable(&vInputVariables);
confidenceStableOutput = getConfVariablesAreStable(&vOutputVariables);
confidenceStable = minValueOf2Values(confidenceStableInput, confidenceStableOutput);
printf("confidence stable: %f\n", confidenceStable);
confidenceUnstableInput = getConfVariablesAreUnstable(&vInputVariables);
confidenceUnstableOutput = getConfVariablesAreUnstable(&vOutputVariables);
printf("unstable In: %f, Out: %f\n", confidenceUnstableInput, confidenceUnstableOutput);
confidenceUnstable = maxValueOf2Values(confidenceUnstableInput, confidenceUnstableOutput);
printf("confidence unstable: %f\n", confidenceUnstable);
if (confidenceUnstableInput > 0) {
printf("jetzt\n");
getchar();
}
//TEST
if (confidenceStable > confidenceUnstable) {
setColor(TXTCOLOR_LIGHTBLUE);
printf("jetzt\n");
setColor(TXTCOLOR_GREY);
getchar();
}
//getchar();
if (confidenceStable > confidenceUnstable) {
//if (false) {
printf(" > stable\n");
//for the beginning (there is no state available/created) -> create state
if (activeState == NULL && vStates.empty()) {
printf(" > new state\n");
makeNewActiveState();
activeState->injectValues(discreteAveragePartitionSize);
confidenceValidState = ValidState->getY((float)activeState->getNumOfInjections());
}
//there is an active state
else if (activeState != NULL) {
//caclulate confidences of deciding for same state
float confidenceSameStateInput = activeState->inputVariablesAreRelatedFuzzy(SameState);
float confidenceSameStateOutput = activeState->outputVariablesAreRelatedFuzzy(SameState);
printf("ConfSameState\nIn: %f\nout: %f\n", confidenceSameStateInput, confidenceSameStateOutput);
//In- and Outputs are unchanged
if ((confidenceSameStateInput > confSameStateInputAdjustableThreshold) && (confidenceSameStateOutput > confSameStateOutputAdjustableThreshold)) {
printf(" > same state\n");
//inject values
activeState->injectValues(discreteAveragePartitionSize);
//calculate the confidence to have a validState
confidenceValidState = ValidState->getY((float)activeState->getNumOfInjections());
//TODO DATE
//check for drifting!!!
//printDrift();
}
//In- and Outputs have changed
else if ((confidenceSameStateInput <= confSameStateInputAdjustableThreshold) && (confidenceSameStateOutput <= confSameStateOutputAdjustableThreshold)) {
printf(" > change state\n");
getchar();
//active state is/was valid
if (confidenceValidState > confValidStateAdjustableThreshold) {
printf("speicher\n");
getchar();
addActiveStateToStateVector();
//TODO DATE
//search for matching state
//or
printf(" > new state\n");
//create an new active state
makeNewActiveState();
//inject values
activeState->injectValues(discreteAveragePartitionSize);
//calculate the confidence to have a validState
confidenceValidState = ValidState->getY((float)activeState->getNumOfInjections());
//TODO DATE
//check for drifting!!!
//printDrift();
}
}
//Only in- or outputs have changed
else {
//active state is/was valid
if (confidenceValidState > confValidStateAdjustableThreshold) {
addActiveStateToStateVector();
printf(" > broken\n");
brokenCounter++;
confidenceBroken = BrokenCounterSamples->getY(brokenCounter);
//getchar();
//TODO DATE??
//Save State
}
}
}
//there is no active state, but there is/are state(s)
else {
printf(" > old or new state\n");
//getchar();
//TODO DATE
//search for matching state
//or
printf(" > new state\n");
makeNewActiveState();
activeState->injectValues(discreteAveragePartitionSize);
confidenceValidState = ValidState->getY((float)activeState->getNumOfInjections());
//TODO DATE
//check for drifting!!!
//printDrift();
}
if (activeState != NULL) {
confidenceDrift = activeState->checkAllVariablesForDriftingFuzzy(discreteAveragePartitionSize, DriftDeviation);
}
//getchar();
}
//unstable
else {
printf(" > unstable\n");
//there is/was an active state
if (activeState != NULL) {
//delete activeState;
if (confidenceValidState > confValidStateAdjustableThreshold)
addActiveStateToStateVector();
activeState = NULL;
}
}
//DATE TODO
//STABLE CONFIDENCE MITEINBEZIEHEN
if ((confidenceBroken >= confidenceBroken) && (confidenceBroken > confidenceBrokenAdjustableThreshold)) {
setColor(TXTCOLOR_LIGHTRED);
printf(" >> BROKEN - confidence %f\n", confidenceBroken);
setColor(TXTCOLOR_GREY);
getchar();
}
else if (confidenceDrift > confidenceDriftAdjustableThreshold) {
setColor(TXTCOLOR_YELLOW);
printf(" >> DRIFT - confidence %f\n", confidenceDrift);
setColor(TXTCOLOR_GREY);
//XXXXXXXXXX ????????????????????????????????????
if (brokenCounter > 0)
brokenCounter--;
getchar();
}
else {
setColor(TXTCOLOR_LIGHTGREEN);
float confidenceOK;
if (confidenceDrift > confidenceBroken)
confidenceOK = 1 - confidenceDrift;
else
confidenceOK = 1 - confidenceBroken;
printf(" >> SYSTEM OK - confidence %f\n", confidenceOK);
setColor(TXTCOLOR_GREY);
}
printf("brokenCounter %u\n", brokenCounter);
printf("number of states: %i\n", vStates.size());
*/
/*
if (variablesAreStable(&vInputVariables) && variablesAreStable(&vOutputVariables)) {
printf(" > stable\n");
//XXX - only for now
csv_writer->write_field(2); //stable
csv_writer->make_new_field();
//getchar();
if (activeState == NULL && vStates.empty()) {
makeNewActiveState();
activeState->injectValues(discreteAveragePartitionSize);
//XXX - only for now
csv_writer->write_field(1); //new active state
csv_writer->make_new_field();
csv_writer->make_new_field();
}
else {
if (activeState != NULL) {
printf("\nbeginning here:\n");
bool flagInputUnchanged = activeState->inputVariablesAreRelated(thresholdToBeRelated);
bool flagOutputUnchanged = activeState->outputVariablesAreRelated(thresholdToBeRelated);
//input and/or output unchanged?
if (flagInputUnchanged && flagOutputUnchanged) {
activeState->injectValues(discreteAveragePartitionSize);
if (!activeState->checkAllVariablesForNotDrifting(discreteAveragePartitionSize, compareDistanceDiscreteAveragePartition, thresholdNotDrift)) {
printDrift();
//XXX - only for now
csv_writer->make_new_field();
csv_writer->write_field(1); //drift
csv_writer->make_new_field();
}
//XXX - only for now
else {
csv_writer->make_new_field();
csv_writer->make_new_field();
}
}
else {
if (activeState->getNumOfInjections() >= minNumToBeValidState) {
if ((!flagInputUnchanged && flagOutputUnchanged) || (flagInputUnchanged && !flagOutputUnchanged)) {
printBroken();
getchar();
//XXX - only for now
csv_writer->make_new_field();
csv_writer->write_field(2); //broken
csv_writer->make_new_field();
}
else {
addActiveStateToStateVector();
if (!findRelatedStateAndMakeItActive()) {
makeNewActiveState();
activeState->injectValues(discreteAveragePartitionSize);
//XXX - only for now
csv_writer->write_field(1); //new active state
csv_writer->make_new_field();
csv_writer->make_new_field();
}
else {
//next line is new
activeState->resetDiscreteAveragePartitionCounter();
//XXX - only for now
csv_writer->write_field(2); //change to existing state
csv_writer->make_new_field();
activeState->injectValues(discreteAveragePartitionSize);
if (!activeState->checkAllVariablesForNotDrifting(discreteAveragePartitionSize, compareDistanceDiscreteAveragePartition, thresholdNotDrift)) {
printDrift();
//XXX - only for now
csv_writer->write_field(1); //drift
csv_writer->make_new_field();
}
//XXX - only for now
else {
csv_writer->make_new_field();
}
}
}
}
else {
delete activeState;
if (!findRelatedStateAndMakeItActive()) {
makeNewActiveState();
activeState->injectValues(discreteAveragePartitionSize);
//XXX - only for now
csv_writer->write_field(1); //new active state
csv_writer->make_new_field();
csv_writer->make_new_field();
}
else {
//next line is new
activeState->resetDiscreteAveragePartitionCounter();
//XXX - only for now
csv_writer->write_field(2); //change to existing state
csv_writer->make_new_field();
activeState->injectValues(discreteAveragePartitionSize);
if (!activeState->checkAllVariablesForNotDrifting(discreteAveragePartitionSize, compareDistanceDiscreteAveragePartition, thresholdNotDrift)) {
printDrift();
//XXX - only for now
csv_writer->write_field(1); //drift
csv_writer->make_new_field();
}
//XXX - only for now
else {
csv_writer->make_new_field();
}
}
}
}
}
else {
if (!findRelatedStateAndMakeItActive()) {
makeNewActiveState();
activeState->injectValues(discreteAveragePartitionSize);
//XXX - only for now
csv_writer->write_field(1); //new active state
csv_writer->make_new_field();
csv_writer->make_new_field();
}
else {
//next line is new
activeState->resetDiscreteAveragePartitionCounter();
//XXX - only for now
csv_writer->write_field(2); //change to existing state
csv_writer->make_new_field();
activeState->injectValues(discreteAveragePartitionSize);
if (!activeState->checkAllVariablesForNotDrifting(discreteAveragePartitionSize, compareDistanceDiscreteAveragePartition, thresholdNotDrift)) {
printDrift();
//XXX - only for now
csv_writer->write_field(1); //drift
csv_writer->make_new_field();
}
//XXX - only for now
else {
csv_writer->make_new_field();
}
}
}
}
if (activeState != NULL) {
printf(" -- an activeState exist: \n");
printf(" --- injections: %u\n", activeState->getNumOfInjections());
//XXX - only for now
csv_writer->write_field((int)activeState->getNumOfInjections()); //number of injections
csv_writer->make_new_line();
}
//XXX - only for now
else {
csv_writer->make_new_field();
}
printf(" -- Number of States (excl. activeState): %u\n", vStates.size());
for (auto &s : vStates) {
printf(" --- injections: %u\n", s->getNumOfInjections());
}
printf(" ... BrokenCounter: %u\n", brokenCounter);
printf(" ... driftCounter: %u\n", driftCounter);
printf("cycle: %u\n", cycle);
if (test) {
test = false;
//getchar();
}
flagVariablesWereStable = true;
}
else {
printf(" > unstable\n");
//XXX - only for now
csv_writer->write_field(1); //unstable
csv_writer->make_new_field();
csv_writer->make_new_field();
csv_writer->make_new_field();
csv_writer->make_new_line();
if (flagVariablesWereStable)
test = true;
//search for states with less injections in all states
if (flagVariablesWereStable) {
if (activeState != NULL) {
if (activeState->getNumOfInjections() >= minNumToBeValidState) {
addActiveStateToStateVector();
}
else {
delete activeState;
}
activeState = NULL;
//getchar();
}
}
flagVariablesWereStable = false;
}
//xxx - only for now
//csv_writer->make_new_line();
*/
}
void StateHandler::closeCsvFile() {
if(csv_writer != NULL)
csv_writer->close_file();
}
string StateHandler::create_Output_File_Name(string cfg_parameter)
{
time_t rawtime;
struct tm * timeinfo;
char output_file_name[200];
char datetime[80];
std::string output_file_name_str;
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(datetime, sizeof(datetime), "%Y-%m-%d_%I-%M-%S", timeinfo);
output_file_name_str = output_directory_name + "output" + datetime + cfg_parameter + ".csv";
//cout << output_file_name_str << endl;
return output_file_name_str;
}
void StateHandler::set_CSV_Writer_parameter(string cfg_parameter)
{
string cur_Output_File_Name = this->create_Output_File_Name(cfg_parameter);
csv_writer->reset_fpointer(cur_Output_File_Name);
}
/*
void StateHandler :: initStateHandler() {
//activeState = NULL;
thresholdToAverage = THRESHOLDTOAVG;
minNumOfChangedForValidStateChange = MINNUMCHANGEDFORVALIDSTATECHANGE;
minimumInjectionsForBeingState = MININJFORBEINGSTATE;
}
StateHandler :: StateHandler() {
set_name(NO_NAME);
initStateHandler();
}
StateHandler :: StateHandler(char* name) {
set_name(name);
initStateHandler();
}
bool StateHandler :: setMinimumInjectionsForBeingState(unsigned int minimumInjectionsForBeingState) {
if (minimumInjectionsForBeingState > 0) {
this->minimumInjectionsForBeingState = minimumInjectionsForBeingState;
return true;
}
return false;
}
unsigned int StateHandler :: getMinimumInjectionsForBeingState() {
return minimumInjectionsForBeingState;
}
bool StateHandler :: add_slot(SlaveAgentSlotOfAgent* slot) {
if(slot != NULL) {
try {
vSlots.push_back(slot);
return true;
}
catch(bad_alloc& error) {
printError("bad_alloc caught: ", error.what());
delete slot;
}
}
return false;
}
void StateHandler :: setThresholdToAverage(float thresholdToAverage) {
this->thresholdToAverage = thresholdToAverage;
}
float StateHandler :: getThresholdToAverage() {
return thresholdToAverage;
}
void StateHandler::set_minNumOfChangedForValidStateChange(unsigned int minNumOfChangedForValidStateChange) {
this->minNumOfChangedForValidStateChange = minNumOfChangedForValidStateChange;
}
unsigned int StateHandler::get_minNumOfChangedForValidStateChange() {
return minNumOfChangedForValidStateChange;
}
bool StateHandler :: trigger() {
bool flagWorked = true;
printf("NumOfStates: ");
for (auto &slot : vSlots) {
printf("%u, ", slot->getNumberOfStates());
}
printf("\n");
//Check all input values if they have changed more than threshold ...and count how many changed
unsigned int numberOfChanges = 0;
for (auto &slot : vSlots) {
float value;
if (slot->get_slaveAgentValue(&value)) {
State* activeState = slot->getActiveState();
if (activeState != NULL) {
printf("act - ");
if (activeState->isNew()) {
printf("new - ");
//numberOfChanges++;
}
else if (activeState->valueIsRelated(value, thresholdToAverage)) {
printf("rel - ");
}
else {
printf("nrel - ");
numberOfChanges++;
}
}
else {
printf("nact - ");
}
}
}
printf("\n");
printf(" >> Number of Changes: %u\n", numberOfChanges);
//nothing has changes more than threshold
if (numberOfChanges == 0) {
printf("\n\n >>> inject in active state\n");
for (auto &slot : vSlots) {
slot->injectValueInActiveState();
}
}
else if(numberOfChanges >= minNumOfChangedForValidStateChange) {
printf("\n\n >>> new (or another) state\n");
for (auto &slot : vSlots) {
State* activeState = slot->getActiveState();
if (activeState != NULL) {
if (activeState->getNumberOfInjections() < minimumInjectionsForBeingState) {
slot->deleteActiveState();
printf(" >> delete State\n");
}
}
}
//search for existing state
bool flagRelated = false;
if (vSlots.empty() == false) {
int ix = vSlots.front()->getIndexOfRelatedState(0, thresholdToAverage);
while (ix > -2) {
if (ix >= 0) {
//TODO: maybe another state fits a bit better.. approach -> euklidean distance?
flagRelated = true;
for (vector<SlaveAgentSlotOfAgent*>::iterator slot = vSlots.begin() + 1; slot < vSlots.end(); slot++) {
if ((*slot)->valueIsRelated(ix, thresholdToAverage) == false) {
flagRelated = false;
}
}
if (flagRelated == true) {
for (auto &slot : vSlots) {
slot->setActiveState(ix);
}
break;
}
ix = vSlots.front()->getIndexOfRelatedState(ix+1, thresholdToAverage);
}
}
}
if (flagRelated == false) {
printf(" >> No related state found\n");
printf("\n\n >>> inject in active state\n");
for (auto &slot : vSlots) {
slot->injectValueInActiveState();
}
}
}
printf("ende\n");
return false;
}
*/
diff --git a/Version_Max_07_05_2018_CMake/src/mount_nodes.cpp b/Version_Max_07_05_2018_CMake/src/mount_nodes.cpp
index b29da68..55b0622 100755
--- a/Version_Max_07_05_2018_CMake/src/mount_nodes.cpp
+++ b/Version_Max_07_05_2018_CMake/src/mount_nodes.cpp
@@ -1,390 +1,408 @@
#include "attach_modules.h"
#include "mount_nodes.h"
#include "rlutil.h"
#include <stdio.h>
+//#define PRINT
+
using namespace rlutil;
bool mount_sensorInAgent(Agent* agent, Sensor* sensor, Channel* channel) {
if(agent != NULL && sensor != NULL && channel != NULL) {
+#ifdef PRINT
printf(" > Sensor ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", sensor->get_name());
setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", sensor->get_id());
+#endif // PRINT
if(agent->get_sensorHandlerOfAgent()->mount_sensorIntoSensorSlot(channel) && sensor->mount_agent(channel)) {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTGREEN);
printf("mounted ");
setColor(TXTCOLOR_GREY);
printf("in Agent ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", agent->get_name());
setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n", agent->get_id());
+#endif // PRINT
return true;
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be mounted in %s (id: %03u)\n", agent->get_name(), agent->get_id());
setColor(TXTCOLOR_GREY);
+#endif // PRINT
}
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf(" > Agent, Sensor, or Channel is not valid\n");
setColor(TXTCOLOR_GREY);
+#endif // PRINT
}
return false;
}
/*
void mount_sensor_in_agent(Agent* agent, Sensor* sensor, Channel* sensor_to_slave, unsigned int position) {
printf(" > ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", sensor->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", sensor->get_id());
if(agent->mount_sensor(sensor_to_slave, position) && sensor->mount_agent(sensor_to_slave)) {
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("mounted ");
rlutil::setColor(TXTCOLOR_GREY);
printf("in ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", agent->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n - on position %u\n", agent->get_id(), position);
}
else {
rlutil::setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be mounted in %s (id: %03u) on position %u\n", agent->get_name(), agent->get_id(), position);
rlutil::setColor(TXTCOLOR_GREY);
}
}
*/
/*
void mount_sensor_in_agent(Agent* agent, Sensor* sensor, Channel* sensor_to_slave, Abstraction* abstraction) {
printf(" > ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", sensor->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", sensor->get_id());
if(agent->mount_sensor(sensor_to_slave, abstraction) && sensor->mount_agent(sensor_to_slave)) {
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("mounted ");
rlutil::setColor(TXTCOLOR_GREY);
printf("in ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", agent->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n - ", agent->get_id());
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("connected ");
rlutil::setColor(TXTCOLOR_GREY);
printf("with Abstraction Module ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", abstraction->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n", abstraction->get_id());
}
else {
rlutil::setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be mounted in %s (id: %03u) connected with Abstraction Module %s (id: %03u)\n", agent->get_name(), agent->get_id(), abstraction->get_name(), abstraction->get_id());
rlutil::setColor(TXTCOLOR_GREY);
}
}
*/
/*
void mount_sensor_in_agent(Agent* agent, Sensor* sensor, Channel* sensor_to_slave, Confidence_Validator* confidence_validator) {
printf(" > ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", sensor->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", sensor->get_id());
if(agent->mount_sensor(sensor_to_slave, confidence_validator) && sensor->mount_agent(sensor_to_slave)) {
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("mounted ");
rlutil::setColor(TXTCOLOR_GREY);
printf("in ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", agent->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n - ", agent->get_id());
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("connected ");
rlutil::setColor(TXTCOLOR_GREY);
printf("with Range of Validity ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", confidence_validator->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n", confidence_validator->get_id());
}
else {
rlutil::setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be mounted in %s (id: %03u) connected with Look up Table %s (id: %03u)\n", agent->get_name(), agent->get_id(), confidence_validator->get_name(), confidence_validator->get_id());
rlutil::setColor(TXTCOLOR_GREY);
}
}
*/
bool mount_sensorInAgent(Agent* agent, Sensor* sensor, Channel* channel, HistoryModule* historyModule) {
if(agent != NULL && sensor != NULL && channel != NULL && historyModule != NULL) {
if(mount_sensorInAgent(agent, sensor, channel)) {
return attach_historyModuleToSensorSlotInAgent(agent, sensor, channel, historyModule);
}
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf("Agent, Sensor, Channel, or HistoryModule is not valid\n");
setColor(TXTCOLOR_GREY);
+#endif // PRINT
}
return false;
}
/*
void mount_sensor_in_agent(Agent* agent, Sensor* sensor, Channel* sensor_to_slave, Confidence_Validator* confidence_validator, Abstraction* abstraction) {
printf(" > ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", sensor->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", sensor->get_id());
if(agent->mount_sensor(sensor_to_slave, confidence_validator, abstraction) && sensor->mount_agent(sensor_to_slave)) {
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("mounted ");
rlutil::setColor(TXTCOLOR_GREY);
printf("in ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", agent->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n - ", agent->get_id());
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("connected ");
rlutil::setColor(TXTCOLOR_GREY);
printf("with Range of Validity ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", confidence_validator->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n - ", confidence_validator->get_id());
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("connected ");
rlutil::setColor(TXTCOLOR_GREY);
printf("with Abstraction Module ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", abstraction->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n", abstraction->get_id());
}
else {
rlutil::setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be mounted in %s (id: %03u) connected with Look up Table %s (id: %03u) and Abstraction Module %s (id: %03u)\n", agent->get_name(), agent->get_id(), confidence_validator->get_name(), confidence_validator->get_id(), abstraction->get_name(), abstraction->get_id());
rlutil::setColor(TXTCOLOR_GREY);
}
}
*/
bool mount_agentInAgent(Agent *masteragent, Agent* slaveagent, Channel* channel) {
if(masteragent != NULL && slaveagent != NULL && channel != NULL) {
if(masteragent->get_slaveAgentHandlerOfAgent()->mount_slaveAgentIntoSlaveAgentSlot(channel)) {
if(slaveagent->get_masterAgentHandlerOfAgent()->mount_masterAgentIntoSlaveAgentSlot(channel)) {
+#ifdef PRINT
printf(" > Agent ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", slaveagent->get_name());
setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", slaveagent->get_id());
setColor(TXTCOLOR_LIGHTGREEN);
printf("mounted ");
setColor(TXTCOLOR_GREY);
printf("in Agent ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", masteragent->get_name());
setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n", masteragent->get_id());
+#endif // PRINT
return true;
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf(" > Could not mount Master Agent %s (id: %03u) in Slave Agent %s (id: %03u)\n", masteragent->get_name(), masteragent->get_id(), slaveagent->get_name(), slaveagent->get_id());
setColor(TXTCOLOR_GREY);
+#endif // PRINT
masteragent->get_slaveAgentHandlerOfAgent()->demount_slaveAgentIntoSlaveAgentSlot(channel);
}
}
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf(" > One of the Agents or Channel not valid\n");
setColor(TXTCOLOR_GREY);
+#endif // PRINT
}
return false;
/*
if(masteragent->mount_slaveagent(slave_to_master, master_to_slave) && slaveagent->mount_masteragent(master_to_slave, slave_to_master)) {
setColor(TXTCOLOR_LIGHTGREEN);
printf("mounted ");
setColor(TXTCOLOR_GREY);
printf("in Agent ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", masteragent->get_name());
setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n", masteragent->get_id());
if(master_to_slave != NULL && slave_to_master != NULL) {
printf(" > bidirectional communication ");
}
else {
printf(" > unidirectional communication ");
if(master_to_slave != NULL) {
printf("(Master to Slave: ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", master_to_slave->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)) ", master_to_slave->get_id());
}
if(slave_to_master != NULL) {
printf("(Slave to Master: ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", slave_to_master->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)) ", slave_to_master->get_id());
}
}
setColor(TXTCOLOR_LIGHTGREEN);
printf("set\n");
setColor(TXTCOLOR_GREY);
}
else {
setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be mounted in Agent %s (id: %03u)\n", masteragent->get_name(), masteragent->get_id());
setColor(TXTCOLOR_GREY);
}
*/
}
/*
void mount_slaveagent_in_agent(Agent *masteragent, Agent* slaveagent, Channel* master_to_slave, Channel* slave_to_master, unsigned int position) {
printf(" > Slave - ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", slaveagent->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", slaveagent->get_id());
if(masteragent->mount_slaveagent(slave_to_master, master_to_slave, position) && slaveagent->mount_masteragent(master_to_slave, slave_to_master)) {
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("mounted ");
rlutil::setColor(TXTCOLOR_GREY);
printf("in Master - ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", masteragent->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n - on position %u\n - ", masteragent->get_id(), position);
if(master_to_slave != NULL && slave_to_master != NULL)
printf("bidirectional communication\n");
else
printf("unidirectional communication\n");
if(master_to_slave != NULL) {
printf(" - Master to Slave: ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", master_to_slave->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n", master_to_slave->get_id());
}
if(slave_to_master != NULL) {
printf(" - Slave to Master: ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", slave_to_master->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n", slave_to_master->get_id());
}
}
else {
rlutil::setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be mounted in Master - %s (id: %03u) on position %u\n", masteragent->get_name(), masteragent->get_id(), position);
rlutil::setColor(TXTCOLOR_GREY);
}
}
*/
/*
void mount_slaveagent_in_agent(Agent *masteragent, Agent* slaveagent, Channel* master_to_slave, Channel* slave_to_master, Cross_Confidence_Validator* ccv) {
printf(" > Slave - ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", slaveagent->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", slaveagent->get_id());
if(masteragent->mount_slaveagent(slave_to_master, master_to_slave, ccv) && slaveagent->mount_masteragent(master_to_slave, slave_to_master)) {
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("mounted ");
rlutil::setColor(TXTCOLOR_GREY);
printf("in Master - ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", masteragent->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n - ", masteragent->get_id());
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("connected ");
rlutil::setColor(TXTCOLOR_GREY);
printf("with Cross Confidence Validator ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", ccv->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n - ", ccv->get_id());
if(master_to_slave != NULL && slave_to_master != NULL)
printf("bidirectional communication\n");
else
printf("unidirectional communication\n");
if(master_to_slave != NULL) {
printf(" - Master to Slave: ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", master_to_slave->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n", master_to_slave->get_id());
}
if(slave_to_master != NULL) {
printf(" - Slave to Master: ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", slave_to_master->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n", slave_to_master->get_id());
}
}
else {
rlutil::setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be mounted in Master - %s (id: %03u) with Cross Confidence Validator %s (id: %03u)\n", masteragent->get_name(), masteragent->get_id(), ccv->get_name(), ccv->get_id());
rlutil::setColor(TXTCOLOR_GREY);
}
}
*/
/*
void mount_bunchmodule_in_agent(Agent *agent, Bunch_Module* bunch_module) {
printf(" > ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", bunch_module->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", bunch_module->get_id());
if(agent->mount_bunch_module(bunch_module)) {
rlutil::setColor(TXTCOLOR_LIGHTGREEN);
printf("mounted ");
rlutil::setColor(TXTCOLOR_GREY);
printf("in ");
rlutil::setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", agent->get_name());
rlutil::setColor(TXTCOLOR_GREY);
printf("(id: %03u)\n", agent->get_id());
}
else {
rlutil::setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be mounted in %s (id: %03u)\n", agent->get_name(), agent->get_id());
rlutil::setColor(TXTCOLOR_GREY);
}
}
*/
diff --git a/Version_Max_07_05_2018_CMake/src/printError.h b/Version_Max_07_05_2018_CMake/src/printError.h
index 2042d97..fea2169 100755
--- a/Version_Max_07_05_2018_CMake/src/printError.h
+++ b/Version_Max_07_05_2018_CMake/src/printError.h
@@ -1,7 +1,7 @@
-#ifndef PRINT_HEADERFILE
-#define PRINT_HEADERFILE
+#ifndef H_PRINT_HEADERFILE
+#define H_PRINT_HEADERFILE
void printError(char*);
void printError(char* errorMsg, const char* additionalInfo);
#endif
\ No newline at end of file
diff --git a/Version_Max_07_05_2018_CMake/src/register_in_testbench.cpp b/Version_Max_07_05_2018_CMake/src/register_in_testbench.cpp
index 3c309ac..bae3c19 100755
--- a/Version_Max_07_05_2018_CMake/src/register_in_testbench.cpp
+++ b/Version_Max_07_05_2018_CMake/src/register_in_testbench.cpp
@@ -1,106 +1,130 @@
#include "register_in_testbench.h"
#include "attach_modulesToTestbench.h"
#include "rlutil.h"
#include <stdio.h>
+//#define PRINT
+
using namespace rlutil;
bool register_agentInTestbench(Testbench *tb, Agent *agent) {
if(tb != NULL && agent != NULL) {
+#ifdef PRINT
printf(" > Agent ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", agent->get_name());
setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", agent->get_id());
-
+#endif // PRINT
if(tb->register_agent(agent)) {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTGREEN);
printf("registered ");
setColor(TXTCOLOR_GREY);
printf("in Testbench ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s\n", tb->get_name());
setColor(TXTCOLOR_GREY);
+#endif // PRINT
return true;
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be registered in %s", tb->get_name());
+#endif // PRINT
}
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf(" > Testbench or Agent is not valid\n");
+#endif // PRINT
}
setColor(TXTCOLOR_GREY);
return false;
}
bool register_sensorInTestbench(Testbench *tb, Sensor *sensor) {
if(tb != NULL && sensor != NULL) {
+#ifdef PRINT
printf(" > Sensor ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", sensor->get_name());
setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", sensor->get_id());
+#endif // PRINT
if(tb->register_sensor(sensor)) {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTGREEN);
printf("registered ");
setColor(TXTCOLOR_GREY);
printf("in ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s\n", tb->get_name());
setColor(TXTCOLOR_GREY);
+#endif // PRINT
return true;
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be registered in %s\n", tb->get_name());
+#endif // PRINT
}
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf(" > Testbench or sensor is not valid\n");
+#endif // PRINT
}
setColor(TXTCOLOR_GREY);
return false;
}
bool register_sensorInTestbench(Testbench *tb, Sensor *sensor, CSVreaderModule *csvReaderModule) {
if(tb != NULL && sensor != NULL && csvReaderModule != NULL) {
if(register_sensorInTestbench(tb, sensor)) {
return attach_csvReaderModuleToSensorSlotInAgent(tb, sensor, csvReaderModule);
}
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf("Testbench or sensor is not valid\n");
+#endif // PRINT
}
setColor(TXTCOLOR_GREY);
return false;
}
bool register_channelInTestbench(Testbench *tb, Channel *channel) {
+#ifdef PRINT
printf(" > Channel ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", channel->get_name());
setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", channel->get_id());
-
- if(tb->register_channel(channel)){
+#endif // PRINT
+ if(tb->register_channel(channel)){
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTGREEN);
printf("registered ");
setColor(TXTCOLOR_GREY);
printf("in Testbench ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s\n", tb->get_name());
+#endif // PRINT
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf("couldn't be registered in %s\n", tb->get_name());
+#endif // PRINT
}
setColor(TXTCOLOR_GREY);
return false;
}
diff --git a/Version_Max_07_05_2018_CMake/src/setupNode.cpp b/Version_Max_07_05_2018_CMake/src/setupNode.cpp
index 25fcffd..9ba5baa 100755
--- a/Version_Max_07_05_2018_CMake/src/setupNode.cpp
+++ b/Version_Max_07_05_2018_CMake/src/setupNode.cpp
@@ -1,45 +1,54 @@
#include "setupNode.h"
#include "rlutil.h"
+//#define PRINT
+
+
using namespace rlutil;
void setWorkingCycleOfSensor(Sensor* sensor, unsigned int workingCycle) {
if (sensor->set_workingCycle(workingCycle)) {
+#ifdef PRINT
printf(" > WorkingCycle of Sensor ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", sensor->get_name());
setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", sensor->get_id());
setColor(TXTCOLOR_LIGHTGREEN);
printf("set ");
setColor(TXTCOLOR_GREY);
printf("to %u\n", workingCycle);
-
+#endif // PRINT
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf(" > Couldn't set WorkingCycle of Sensor %s (id: %03u)\n", sensor->get_name(), sensor->get_id());
setColor(TXTCOLOR_GREY);
+#endif // PRINT
}
}
void setWorkingCycleOfAgent(Agent* agent, unsigned int workingCycle) {
if (agent->set_workingCycle(workingCycle)) {
+#ifdef PRINT
printf(" > WorkingCycle of Agent ");
setColor(TXTCOLOR_LIGHTCYAN);
printf("%s ", agent->get_name());
setColor(TXTCOLOR_GREY);
printf("(id: %03u) ", agent->get_id());
setColor(TXTCOLOR_LIGHTGREEN);
printf("set ");
setColor(TXTCOLOR_GREY);
printf("to %u\n", workingCycle);
-
+#endif // PRINT
}
else {
+#ifdef PRINT
setColor(TXTCOLOR_LIGHTRED);
printf(" > Couldn't set WorkingCycle of Sensor %s (id: %03u)\n", agent->get_name(), agent->get_id());
setColor(TXTCOLOR_GREY);
+#endif // PRINT
}
}
\ No newline at end of file

File Metadata

Mime Type
text/x-diff
Expires
Sun, Apr 27, 2:20 PM (1 d, 15 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
134527
Default Alt Text
(103 KB)

Event Timeline