Page MenuHomePhorge

No OneTemporary

Size
50 KB
Referenced Files
None
Subscribers
None
diff --git a/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp b/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp
index 93aba31..9d6ddd3 100644
--- a/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp
+++ b/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp
@@ -1,247 +1,247 @@
//===- examples/agent-functionalities/Reliability-functionality.cpp *C++-*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file examples/agent-functionalities/Reliability-functionality.cpp
///
/// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at )
///
/// \date 2019
///
/// \brief A simple example on defining Relianility Functionalities.
///
//===----------------------------------------------------------------------===//
#define Reliability_trace_level 5
#include "rosa/config/version.h"
#include "rosa/support/log.h"
#include "rosa/agent/CrossCombinator.h"
#include "rosa/agent/RangeConfidence.hpp"
#include "rosa/agent/ReliabilityConfidenceCombinator.h"
#include <map>
#include <vector>
using namespace rosa::agent;
int main(void) {
typedef double SensorValueType;
typedef long StateType;
typedef double ReliabilityType;
std::unique_ptr<RangeConfidence<ReliabilityType, StateType, SensorValueType>>
Confidence(new RangeConfidence<ReliabilityType, StateType,
SensorValueType>(
{{0, PartialFunction<double, double>(
{
{{0, 3},
std::make_shared<LinearFunction<double, double>>(
0, 1.0 / 3)},
{{3, 6},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{6, 9},
std::make_shared<LinearFunction<double, double>>(
3.0, -1.0 / 3)},
},
0)},
{1, PartialFunction<double, double>(
{
{{6, 9},
std::make_shared<LinearFunction<double, double>>(
-2, 1.0 / 3)},
{{9, 12},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{12, 15},
std::make_shared<LinearFunction<double, double>>(
5, -1.0 / 3)},
},
0)},
{2, PartialFunction<double, double>(
{
{{12, 15},
std::make_shared<LinearFunction<double, double>>(
-4, 1.0 / 3)},
{{15, 18},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{18, 21},
std::make_shared<LinearFunction<double, double>>(
7, -1.0 / 3)},
},
0)}}));
std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>> Reliability(
new LinearFunction<SensorValueType, ReliabilityType>(1, -1.0 / 3));
std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>>
ReliabilitySlope(
new LinearFunction<SensorValueType, ReliabilityType>(1, -1.0 / 3));
std::unique_ptr<Abstraction<std::size_t, ReliabilityType>> TimeConfidence(
new LinearFunction<std::size_t, ReliabilityType>(1, -1.0 / 3));
auto lowlevel =
new ReliabilityAndConfidenceCombinator<SensorValueType, StateType,
ReliabilityType>();
std::vector<long> states;
states.push_back(0);
states.push_back(1);
states.push_back(2);
lowlevel->setConfidenceFunction(Confidence);
lowlevel->setReliabilityFunction(Reliability);
lowlevel->setReliabilitySlopeFunction(ReliabilitySlope);
lowlevel->setTimeConfidenceFunction(TimeConfidence);
lowlevel->setStates(states);
lowlevel->setHistoryLength(2);
lowlevel->setValueSetCounter(1);
/* ----------------------------- Do Something
* ---------------------------------------------------------------- */
std::cout << "Testing the lowlevel component with static feedback telling it "
"that the most lickely state is 2.\n";
for (int a = 0; a < 30; a++)
std::cout << "a: " << a << "\n"
<< (lowlevel->feedback({{0, 0}, {1, 0.3}, {2, 0.8}}),
- lowlevel->mostLikelyIdentifierAndReliability(a))
+ lowlevel->getmostLikelyIdentifierAndReliability(a))
<< "\n";
std::cout << "---------------------------------------------------------------"
"---------------------------------\n";
std::cout << "------------------------------------High level "
"Test---------------------------------------------\n";
std::cout
<< "Configured in a way that the Master thinks that both Sensors "
"should have the same State.\n While feeding both the \"opposite\" "
"values one acending the other decending from the maximum.\n";
std::unique_ptr<RangeConfidence<ReliabilityType, StateType, SensorValueType>>
Confidence2(new RangeConfidence<ReliabilityType, StateType,
SensorValueType>(
{{0, PartialFunction<double, double>(
{
{{0, 3},
std::make_shared<LinearFunction<double, double>>(
0, 1.0 / 3)},
{{3, 6},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{6, 9},
std::make_shared<LinearFunction<double, double>>(
3.0, -1.0 / 3)},
},
0)},
{1, PartialFunction<double, double>(
{
{{6, 9},
std::make_shared<LinearFunction<double, double>>(
-2, 1.0 / 3)},
{{9, 12},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{12, 15},
std::make_shared<LinearFunction<double, double>>(
5, -1.0 / 3)},
},
0)},
{2, PartialFunction<double, double>(
{
{{12, 15},
std::make_shared<LinearFunction<double, double>>(
-4, 1.0 / 3)},
{{15, 18},
std::make_shared<LinearFunction<double, double>>(1, 0)},
{{18, 21},
std::make_shared<LinearFunction<double, double>>(
7, -1.0 / 3)},
},
0)}}));
std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>> Reliability2(
new LinearFunction<SensorValueType, ReliabilityType>(1, -1.0 / 9));
std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>>
ReliabilitySlope2(
new LinearFunction<SensorValueType, ReliabilityType>(1, -1.0 / 9));
std::unique_ptr<Abstraction<std::size_t, ReliabilityType>> TimeConfidence2(
new LinearFunction<std::size_t, ReliabilityType>(1, -1.0 / 9));
auto lowlevel2 =
new ReliabilityAndConfidenceCombinator<SensorValueType, StateType,
ReliabilityType>();
std::vector<long> states2;
states2.push_back(0);
states2.push_back(1);
states2.push_back(2);
lowlevel2->setConfidenceFunction(Confidence2);
lowlevel2->setReliabilityFunction(Reliability2);
lowlevel2->setReliabilitySlopeFunction(ReliabilitySlope2);
lowlevel2->setTimeConfidenceFunction(TimeConfidence2);
lowlevel2->setStates(states2);
lowlevel2->setHistoryLength(2);
lowlevel2->setValueSetCounter(1);
CrossCombinator<StateType, ReliabilityType> *highlevel =
new CrossCombinator<StateType, ReliabilityType>();
std::unique_ptr<Abstraction<long, double>> func1(new PartialFunction<long, double>(
{
{{0, 1}, std::make_shared<LinearFunction<long, double>>(1, 0)},
{{1, 2}, std::make_shared<LinearFunction<long, double>>(2, -1.0)},
},
0));
highlevel->addCrossReliabilityProfile(0, 1, func1);
highlevel->setCrossReliabilityCombinatorMethod(
CrossCombinator<StateType, ReliabilityType>::AVERAGE);
highlevel->setCrossReliabilityParameter(1);
highlevel->addStates(0, states);
highlevel->addStates(1, states);
for (int a = 0; a < 21; a++) {
- auto out1 = lowlevel->mostLikelyIdentifierAndReliability(a),
- out2 = lowlevel2->mostLikelyIdentifierAndReliability((int)21 - a);
+ auto out1 = lowlevel->getmostLikelyIdentifierAndReliability(a),
+ out2 = lowlevel2->getmostLikelyIdentifierAndReliability((int)21 - a);
std::cout << "s1: " << out1 << "\ns2:" << out2 << "\n";
std::vector<std::tuple<rosa::id_t, StateType, ReliabilityType>> tmp2;
tmp2.push_back({0, out1.Identifier, out1.Reliability});
tmp2.push_back({1, out2.Identifier, out2.Reliability});
auto out_o = highlevel->operator()(tmp2);
std::cout << "it: " << a << "\t rel: " << out_o.CrossReliability << "\n";
std::cout << "\t subs:\n";
for (auto q : out_o.CrossConfidence) {
std::cout << "\t\t id:" << q.first << "\n";
/*
for(auto z: q.second)
{
std::cout << "\t\t\t Identifier: " << z.Identifier << "\tRel: " << z.Reliability
<< "\n"; tmp.push_back({z.Identifier,z.Reliability});
}
*/
for (auto z : q.second) {
std::cout << "\t\t\t Identifier: " << z.Identifier << "\tRel: " << z.Reliability
<< "\n";
}
if (q.first == 0)
lowlevel->feedback(q.second);
else
lowlevel2->feedback(q.second);
}
}
/* ----------------------------- Cleanup
* --------------------------------------------------------------------- */
delete highlevel;
delete lowlevel;
delete lowlevel2;
}
\ No newline at end of file
diff --git a/include/rosa/agent/ReliabilityConfidenceCombinator.h b/include/rosa/agent/ReliabilityConfidenceCombinator.h
index 1efb7dd..901a12e 100644
--- a/include/rosa/agent/ReliabilityConfidenceCombinator.h
+++ b/include/rosa/agent/ReliabilityConfidenceCombinator.h
@@ -1,758 +1,804 @@
//===-- rosa/agent/ReliabilityConfidenceCombinator.h ------------*- C++ -*-===//
//
// The RoSA Framework
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/ReliabilityConfidenceCombinator.h
///
/// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *ReliabilityConfidenceCombinator* *functionality*.
///
/// \note based on Maximilian Goetzinger (maxgot@utu.fi) code in
/// CAM_Dirty_include SA-EWS2_Version... inside Agent.cpp
///
/// \note By defining and setting Reliability_trace_level it is possible to
/// change the level to which it should be traced. \note All classes throw
/// runtime errors if not all things are set
///
/// \note should the Reliability be capped?
///
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_ReliabilityConfidenceCombinator_H
#define ROSA_AGENT_ReliabilityConfidenceCombinator_H
#include "rosa/core/forward_declarations.h" // needed for id_t
#include "rosa/support/log.h"
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/RangeConfidence.hpp"
#include <algorithm>
#include <type_traits>
#include <vector>
/// 0 everything
/// 1 vectors
/// 2 outputs
#define trace_everything 0
#define trace_vectors 1
#define trace_outputs 2
#ifndef Reliability_trace_level
#define Reliability_trace_level 0
#endif
#define trace_end "\n\n\n"
namespace rosa {
namespace agent {
/// This is a struct with a few methods that make Reliability Combinator
/// more readable \tparam IdentifierType The datatype of the States \tparam
/// ReliabilityType The datatype of the Reliability
template <typename IdentifierType, typename ReliabilityType> struct ConfOrRel {
/// making both Template Arguments readable to make a few things easier
using _IdentifierType = IdentifierType;
/// making both Template Arguments readable to make a few things easier
using _ReliabilityType = ReliabilityType;
/// The actual place where the data is stored
IdentifierType Identifier;
/// The actual place where the data is stored
ReliabilityType Reliability;
ConfOrRel(IdentifierType _Identifier, ReliabilityType _Reliability)
: Identifier(_Identifier), Reliability(_Reliability){};
ConfOrRel(){};
/// Pushes the Data in a Human readable form
/// \param out The stream where it is written to
/// \param c The struct itself
friend std::ostream &operator<<(std::ostream &out, const ConfOrRel &c) {
- out << "Identifier: " << c.Identifier << "\t Reliability: " << c.Reliability << " ";
+ out << "Identifier: " << c.Identifier << "\t Reliability: " << c.Reliability
+ << " ";
return out;
}
/// needed or it throws an clang diagnosic error
- using map = std::map<IdentifierType, ReliabilityType>; // needed or it throws an
- // clang diagnosic error
+ using map =
+ std::map<IdentifierType, ReliabilityType>; // needed or it throws an
+ // clang diagnosic error
/// Filles the vector with the data inside the map
/// \param me The vector to be filled
/// \param data The data wich is to be pushed into the vector
friend std::vector<ConfOrRel> &operator<<(std::vector<ConfOrRel> &me,
map &&data) {
for (auto tmp : data) {
me.push_back(ConfOrRel(tmp.first, tmp.second));
#if Reliability_trace_level <= trace_everything
LOG_TRACE_STREAM << "\n" << ConfOrRel(tmp.first, tmp.second) << trace_end;
#endif
}
return me;
}
/// This is to push the data inside a vector in a human readable way into the
/// ostream \param out The ostream \param c The vector which is read
friend std::ostream &operator<<(std::ostream &out,
const std::vector<ConfOrRel> &c) {
std::size_t index = 0;
for (ConfOrRel data : c) {
out << index << " : " << data << "\n";
index++;
}
return out;
}
};
/// This calculates the minimum of the Reliabilities & the given value
/// \param me The vector with the Reliabilities
/// \param value The comparing value
template <typename Conf>
std::vector<Conf> min(std::vector<Conf> me,
typename Conf::_ReliabilityType value) {
static_assert(std::is_arithmetic<typename Conf::_ReliabilityType>::value);
for (auto tmp : me)
tmp.Reliability = std::min(tmp.Reliability, value);
return me;
}
/// This calculates the maximum of the Reliabilities & the given value
/// \param me The vector with the Reliabilities
/// \param value The comparing value
template <typename Conf>
std::vector<Conf> max(std::vector<Conf> me,
typename Conf::_ReliabilityType value) {
static_assert(std::is_arithmetic<typename Conf::_ReliabilityType>::value);
for (auto tmp : me)
tmp.Reliability = std::max(tmp.Reliability, value);
return me;
}
/// This calculates the average of the Reliabilities & the given value
/// \param me The vector with the Reliabilities
/// \param value The comparing value
template <typename Conf>
std::vector<Conf> average(std::vector<Conf> me,
typename Conf::_ReliabilityType value) {
static_assert(std::is_arithmetic<typename Conf::_ReliabilityType>::value);
for (auto tmp : me)
tmp.Reliability = (tmp.Reliability + value) / 2;
return me;
}
/// This calculates the average of the Reliabilities & the given value
/// \param me The vector with the Reliabilities
/// \param value The comparing value
template <typename Conf>
std::vector<Conf> mult(std::vector<Conf> me,
typename Conf::_ReliabilityType value) {
static_assert(std::is_arithmetic<typename Conf::_ReliabilityType>::value);
for (auto tmp : me)
tmp.Reliability = tmp.Reliability * value / 2;
return me;
}
/// This average's the Reliabilities of the same Identifiers
template <typename Conf>
std::vector<Conf> average(std::vector<Conf> A, std::vector<Conf> B) {
static_assert(std::is_arithmetic<typename Conf::_ReliabilityType>::value);
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Reliability = (tmp_me.Reliability + tmp_other.Reliability) / 2;
}
}
return A;
}
/// This min's the Reliabilities of the same Identifiers
template <typename Conf>
std::vector<Conf> min(std::vector<Conf> A, std::vector<Conf> B) {
static_assert(std::is_arithmetic<typename Conf::_ReliabilityType>::value);
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Reliability =
std::min(tmp_me.Reliability + tmp_other.Reliability);
}
}
return A;
}
/// This max's the Reliabilities of the same Identifiers
template <typename Conf>
std::vector<Conf> max(std::vector<Conf> A, std::vector<Conf> B) {
static_assert(std::is_arithmetic<typename Conf::_ReliabilityType>::value);
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Reliability =
std::max(tmp_me.Reliability + tmp_other.Reliability);
}
}
return A;
}
/// This mult's the Reliabilities of the same Identifiers
template <typename Conf>
std::vector<Conf> mult(std::vector<Conf> A, std::vector<Conf> B) {
static_assert(std::is_arithmetic<typename Conf::_ReliabilityType>::value);
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Reliability = tmp_me.Reliability * tmp_other.Reliability;
}
}
return A;
}
/// This is the combinator for Reliability and confidences it takes the
/// Sensor value, its "History" and feedback from \c
/// CrossCombinator to calculate different Reliabilities.
/// \tparam SensorValueType Datatype of the Sensor value ( Typically
-/// double or float) \tparam IdentifierType Datatype of the State ( Typically long or
-/// int)
+/// double or float) \tparam IdentifierType Datatype of the State ( Typically
+/// long or int)
/// \tparam ReliabilityType Datatype of the Reliability (
/// Typically double or float)
///
/// \note more information about how it calculates
-/// the Reliabilities
+/// the Reliabilities it should be considered feedback is a sort of Confidence
/// \verbatim
///----------------------------------------------------------------------------------
///
///
/// ->Reliability---> getInputReliability()
/// | |
/// | V
-/// Sensor Value ---| PossibleIdentifierCombinationMethod -> next line
+/// Sensor Value ---| PossibleIdentifierCombinationMethod -> next line
/// | A |
/// | | V
/// ->Confidence--- getPossibleIdentifiers()
///
///-----------------------------------------------------------------------------------
///
/// feedback
/// |
/// V
/// ValuesFromMaster
/// | -> History ---|
/// V | V
/// here -> FeedbackCombinatorMethod --------> HistoryCombinatorMethod->nextline
/// | |
/// V V
-/// getpossibleIdentifiersWithMasterFeedback() getPossibleIdentifiersWithHistory()
+/// getpossibleIdentifiersWithMasterFeedback()getPossibleIdentifiersWithHistory()
///
///----------------------------------------------------------------------------------
///
-/// here -> sort -> most likely -> mostLikelyIdentifierAndReliability()
+/// here -> sort -> most likely -> getmostLikelyIdentifierAndReliability()
///
/// ---------------------------------------------------------------------------------
/// \endverbatim
/// the mentioned methods are early outs so if two ore more of them are run in
/// the same step they will be interpreted as different time steps
/// <pre>
/// Default values for Combinators:
/// InputReliabilityCombinator = combinationMin;
-/// PossibleIdentifierCombinationMethod = PossibleIdentifierCombinationMethodMin;
+/// PossibleIdentifierCombinationMethod=PossibleIdentifierCombinationMethodMin;
/// FeedbackCombinatorMethod = FeedbackCombinatorMethodAverage;
/// HistoryCombinatorMethod = HistoryCombinatorMethodMax;
/// </pre>
+/// To understand the place where the combinator methods come into play a list
+/// for each getter which Methods are used.
+///
+/// <pre>
+/// \c getInputReliability():
+/// -InputReliabilityCombinator
+/// \c getPossibleIdentifiers():
+/// -InputReliabilityCombinator
+/// -PossibleIdentifierCombinationMethod
+/// \c getpossibleIdentifiersWithMasterFeedback():
+/// -InputReliabilityCombinator
+/// -PossibleIdentifierCombinationMethod
+/// -FeedbackCombinatorMethod
+/// \c getPossibleIdentifiersWithHistory():
+/// -InputReliabilityCombinator
+/// -PossibleIdentifierCombinationMethod
+/// -FeedbackCombinatorMethod
+/// -HistoryCombinatorMethod
+/// \c getmostLikelyIdentifierAndReliability():
+/// -InputReliabilityCombinator
+/// -PossibleIdentifierCombinationMethod
+/// -FeedbackCombinatorMethod
+/// -HistoryCombinatorMethod
+/// </pre>
+///
///
///
///
template <typename SensorValueType, typename IdentifierType,
typename ReliabilityType>
class ReliabilityAndConfidenceCombinator {
public:
static_assert(std::is_arithmetic<SensorValueType>::value,
"LowLevel: SensorValueType has to an arithmetic type\n");
static_assert(std::is_arithmetic<IdentifierType>::value,
"LowLevel: IdentifierType has to an arithmetic type\n");
static_assert(std::is_arithmetic<ReliabilityType>::value,
"LowLevel: ReliabilityType has to an arithmetic type\n");
/// Typedef to shorten the writing.
/// \c ConfOrRel
using ConfOrRel = ConfOrRel<IdentifierType, ReliabilityType>;
/// Calculates the input reliability by combining Reliability of the Sensor
/// and the Slope Reliability \param SensorValue The sensor Value \note to set
/// the combination method \c setInputReliabilityCombinator()
auto getInputReliability(SensorValueType SensorValue) {
auto inputReliability =
getReliability(SensorValue, previousSensorValue, valueSetCounter);
previousSensorValue = SensorValue;
PreviousSensorValueExists = true;
return inputReliability;
}
- /// Calculates the Reliability
- /// \param SensorValue The current Values of the Sensor
- ///
- /// \return Reliability and Identifier of the current SensorValue
- ///
- ConfOrRel mostLikelyIdentifierAndReliability(SensorValueType SensorValue) {
-#if Reliability_trace_level <= trace_outputs
- LOG_TRACE_STREAM << "\nTrace level is set to: " << Reliability_trace_level
- << "\n"
- << "Will trace: "
- << ((Reliability_trace_level == trace_outputs)
- ? "outputs"
- : (Reliability_trace_level == trace_vectors)
- ? "vectors"
- : (Reliability_trace_level ==
- trace_everything)
- ? "everything"
- : "undefined")
- << trace_end;
-#endif
-
- std::vector<ConfOrRel> ActuallPossibleIdentifiers;
- std::vector<ConfOrRel> possibleIdentifiers;
- ReliabilityType inputReliability = getInputReliability(SensorValue);
-
-#if Reliability_trace_level <= trace_vectors
- LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
-#endif
-
- possibleIdentifiers << Confidence->operator()(SensorValue);
-
- possibleIdentifiers =
- PossibleIdentifierCombinationMethod(possibleIdentifiers, inputReliability);
- possibleIdentifiers = FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster);
-
- saveInHistory(possibleIdentifiers);
-#if Reliability_trace_level <= trace_vectors
- LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n"
- << possibleIdentifiers << trace_end;
- LOG_TRACE_STREAM << "\npossibleIdentifiers:\n" << possibleIdentifiers << trace_end;
-#endif
- possibleIdentifiers.clear();
-
- possibleIdentifiers = getAllPossibleIdentifiersBasedOnHistory();
-
- std::sort(possibleIdentifiers.begin(), possibleIdentifiers.end(),
- [](ConfOrRel A, ConfOrRel B) -> bool {
- return A.Reliability > B.Reliability;
- });
-
-#if Reliability_trace_level <= trace_outputs
- LOG_TRACE_STREAM << "\noutput lowlevel: " << possibleIdentifiers.at(0)
- << trace_end;
-#endif
- return possibleIdentifiers.at(0);
- }
-
/// Calculates the possible Identifiers
/// \param SensorValue the Sensor Value
/// \brief it combines the input reliability and the confidence of the Sensor.
/// The use combination method can be set using \c
/// setPossibleIdentifierCombinationMethod()
auto getPossibleIdentifiers(SensorValueType SensorValue) {
std::vector<ConfOrRel> possibleIdentifiers;
ReliabilityType inputReliability = getInputReliability(SensorValue);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
#endif
possibleIdentifiers << Confidence->operator()(SensorValue);
- possibleIdentifiers =
- PossibleIdentifierCombinationMethod(possibleIdentifiers, inputReliability);
+ possibleIdentifiers = PossibleIdentifierCombinationMethod(
+ possibleIdentifiers, inputReliability);
return possibleIdentifiers;
}
/// return the Possible Values with the feedback in mind
/// \param SensorValue The sensor Value
/// \brief it combines the input reliability and the confidence of the Sensor.
/// The combines them with FeedbackCombinatorMethod and returns the result.
auto getpossibleIdentifiersWithMasterFeedback(SensorValueType SensorValue) {
std::vector<ConfOrRel> possibleIdentifiers;
ReliabilityType inputReliability = getInputReliability(SensorValue);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
#endif
possibleIdentifiers << Confidence->operator()(SensorValue);
- possibleIdentifiers =
- PossibleIdentifierCombinationMethod(possibleIdentifiers, inputReliability);
+ possibleIdentifiers = PossibleIdentifierCombinationMethod(
+ possibleIdentifiers, inputReliability);
- possibleIdentifiers = FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster);
+ possibleIdentifiers =
+ FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster);
return possibleIdentifiers;
}
- /// returns all possible Identifiers and Reliabilities with the History in mind
- /// \param SensorValue the Sensor value
- /// how this is done is described at the class.
+ /// returns all possible Identifiers and Reliabilities with the History in
+ /// mind \param SensorValue the Sensor value how this is done is described at
+ /// the class.
auto getPossibleIdentifiersWithHistory(SensorValueType SensorValue) {
std::vector<ConfOrRel> ActuallPossibleIdentifiers;
std::vector<ConfOrRel> possibleIdentifiers;
ReliabilityType inputReliability = getInputReliability(SensorValue);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
#endif
possibleIdentifiers << Confidence->operator()(SensorValue);
+ possibleIdentifiers = PossibleIdentifierCombinationMethod(
+ possibleIdentifiers, inputReliability);
possibleIdentifiers =
- PossibleIdentifierCombinationMethod(possibleIdentifiers, inputReliability);
- possibleIdentifiers = FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster);
+ FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster);
saveInHistory(possibleIdentifiers);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n"
<< possibleIdentifiers << trace_end;
- LOG_TRACE_STREAM << "\npossibleIdentifiers:\n" << possibleIdentifiers << trace_end;
+ LOG_TRACE_STREAM << "\npossibleIdentifiers:\n"
+ << possibleIdentifiers << trace_end;
#endif
possibleIdentifiers.clear();
return getAllPossibleIdentifiersBasedOnHistory();
}
+
+ /// Calculates the Reliability
+ /// \param SensorValue The current Values of the Sensor
+ ///
+ /// \return Reliability and Identifier of the current SensorValue
+ ///
+ ConfOrRel getmostLikelyIdentifierAndReliability(SensorValueType SensorValue) {
+#if Reliability_trace_level <= trace_outputs
+ LOG_TRACE_STREAM << "\nTrace level is set to: " << Reliability_trace_level
+ << "\n"
+ << "Will trace: "
+ << ((Reliability_trace_level == trace_outputs)
+ ? "outputs"
+ : (Reliability_trace_level == trace_vectors)
+ ? "vectors"
+ : (Reliability_trace_level ==
+ trace_everything)
+ ? "everything"
+ : "undefined")
+ << trace_end;
+#endif
+
+ std::vector<ConfOrRel> ActuallPossibleIdentifiers;
+ std::vector<ConfOrRel> possibleIdentifiers;
+ ReliabilityType inputReliability = getInputReliability(SensorValue);
+
+#if Reliability_trace_level <= trace_vectors
+ LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
+#endif
+
+ possibleIdentifiers << Confidence->operator()(SensorValue);
+
+ possibleIdentifiers = PossibleIdentifierCombinationMethod(
+ possibleIdentifiers, inputReliability);
+ possibleIdentifiers =
+ FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster);
+
+ saveInHistory(possibleIdentifiers);
+#if Reliability_trace_level <= trace_vectors
+ LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n"
+ << possibleIdentifiers << trace_end;
+ LOG_TRACE_STREAM << "\npossibleIdentifiers:\n"
+ << possibleIdentifiers << trace_end;
+#endif
+ possibleIdentifiers.clear();
+
+ possibleIdentifiers = getAllPossibleIdentifiersBasedOnHistory();
+
+ std::sort(possibleIdentifiers.begin(), possibleIdentifiers.end(),
+ [](ConfOrRel A, ConfOrRel B) -> bool {
+ return A.Reliability > B.Reliability;
+ });
+
+#if Reliability_trace_level <= trace_outputs
+ LOG_TRACE_STREAM << "\noutput lowlevel: " << possibleIdentifiers.at(0)
+ << trace_end;
+#endif
+ return possibleIdentifiers.at(0);
+ }
+
+
/// feedback for this functionality most commonly it comes from a Master Agent
/// \param ValuesFromMaster The Identifiers + Reliability for the feedback
/// \brief This input kind of resembles a confidence but not
- /// directly it more or less says: compared to the other Identifiers inside the
- /// System these are the Identifiers with the Reliability that you have.
+ /// directly it more or less says: compared to the other Identifiers inside
+ /// the System these are the Identifiers with the Reliability that you have.
void feedback(std::vector<ConfOrRel> ValuesFromMaster) {
this->ValuesFromMaster = ValuesFromMaster;
}
//
// ----------------------Reliability and Confidence Function setters----------
//
/// This is the setter for Confidence Function
/// \param Confidence A pointer to the Functional for the \c Confidence of the
/// Sensor value
void setConfidenceFunction(
std::unique_ptr<RangeConfidence<ReliabilityType, IdentifierType,
SensorValueType>> &Confidence) {
this->Confidence = std::move(Confidence);
}
/// This is the setter for Reliability Function
/// \param Reliability A pointer to the Functional for the Reliability
/// \brief The Reliability takes the current Sensor value and return the
/// Reliability of the value.
void setReliabilityFunction(
std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>>
&Reliability) {
this->Reliability = std::move(Reliability);
}
/// This is the setter for ReliabilitySlope Function
/// \param ReliabilitySlope A pointer to the Functional for the
/// ReliabilitySlope
/// \brief The ReliabilitySlope takes the difference of the current Sensor
/// Value to the last one and tells you how likely the change is.
void setReliabilitySlopeFunction(
std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>>
&ReliabilitySlope) {
this->ReliabilitySlope = std::move(ReliabilitySlope);
}
/// This is the setter for TimeConfidence Function
/// \param TimeConfidence A pointer to the Functional for the TimeConfidence
/// \brief The time function takes the position in the History with greater
/// equals older and return a Reliability of how "relevant" it is.
void setTimeConfidenceFunction(
std::unique_ptr<Abstraction<std::size_t, ReliabilityType>>
&TimeConfidence) {
this->TimeConfidence = std::move(TimeConfidence);
}
/// This is the setter for all possible States
/// \param states A vector containing all states
/// \brief This exists even though \c State Type is an arithmetic Type because
/// the states do not need to be "next" to each other ( ex. states={ 1 7 24 })
void setStates(std::vector<IdentifierType> states) { this->States = states; }
/// This sets the Maximum length of the History
/// \param length The length
void setHistoryLength(std::size_t length) { this->HistoryMaxSize = length; }
/// This sets the Value set Counter
/// \param ValueSetCounter the new Value
/// \note This might actually be only an artifact. It is only used to get the
/// reliability from the \c ReliabilitySlope [ ReliabilitySlope->operator()(
/// (lastValue - actualValue) / (SensorValueType)valueSetCounter) ]
void setValueSetCounter(unsigned int ValueSetCounter) {
this->valueSetCounter = ValueSetCounter;
}
//
// ----------------combinator setters-----------------------------------------
//
/// This sets the combination method used by the History
/// \param Meth the method which should be used. predefined \c
/// HistoryCombinatorMethodMin() \c HistoryCombinatorMethodMax() \c
/// HistoryCombinatorMethodMult() \c HistoryCombinatorMethodAverage()
void setHistoryCombinatorMethod(ReliabilityType (*Meth)(ReliabilityType,
ReliabilityType)) {
HistoryCombinatorMethod = Meth;
}
- /// sets the predefined method for the combination of the possible Identifiers and
- /// the master \param Meth the method predefined ones are
- /// \c FeedbackCombinatorMethodAverage() \c FeedbackCombinatorMethodMin() \c
+ /// sets the predefined method for the combination of the possible Identifiers
+ /// and the master \param Meth the method predefined ones are \c
+ /// FeedbackCombinatorMethodAverage() \c FeedbackCombinatorMethodMin() \c
/// FeedbackCombinatorMethodMax() \c FeedbackCombinatorMethodMult()
void setFeedbackCombinatorMethod(std::vector<ConfOrRel> (*Meth)(
std::vector<ConfOrRel>, std::vector<ConfOrRel>)) {
FeedbackCombinatorMethod = Meth;
}
/// Sets the used combination method for Possible Identifiers
/// \param Meth a Pointer for the used Method. Predefined methods \c
- /// PossibleIdentifierCombinationMethodMin() \c PossibleIdentifierCombinationMethodMax()
- /// \c PossibleIdentifierCombinationMethodAverage()
+ /// PossibleIdentifierCombinationMethodMin() \c
+ /// PossibleIdentifierCombinationMethodMax() \c
+ /// PossibleIdentifierCombinationMethodAverage()
void setPossibleIdentifierCombinationMethod(
std::vector<ConfOrRel> (*Meth)(std::vector<ConfOrRel>, ReliabilityType)) {
PossibleIdentifierCombinationMethod = Meth;
}
/// sets the input reliability combinator method
/// \param method the to be used method
/// \note there are predefined methods \c combinationMin() \c combinationMax()
/// \c combinationAverage()
void setInputReliabilityCombinator(
ReliabilityType (*method)(ReliabilityType, ReliabilityType)) {
InputReliabilityCombinator = method;
}
//
// ----------------predefined combinators------------------------------------
//
- /// predefined Method
- static ReliabilityType HistoryCombinatorMethodMin(ReliabilityType A,
- ReliabilityType B) {
- return std::min(A, B);
- }
- /// predefined Method
- static ReliabilityType HistoryCombinatorMethodMax(ReliabilityType A,
- ReliabilityType B) {
- return std::max(A, B);
- }
- /// predefined Method
- static ReliabilityType HistoryCombinatorMethodMult(ReliabilityType A,
- ReliabilityType B) {
- return A * B;
- }
- /// predefined Method
- static ReliabilityType HistoryCombinatorMethodAverage(ReliabilityType A,
- ReliabilityType B) {
- return (A + B) / 2;
- }
+ struct predefinedMethods {
+ /// predefined Method
+ static ReliabilityType HistoryCombinatorMethodMin(ReliabilityType A,
+ ReliabilityType B) {
+ return std::min(A, B);
+ }
+ /// predefined Method
+ static ReliabilityType HistoryCombinatorMethodMax(ReliabilityType A,
+ ReliabilityType B) {
+ return std::max(A, B);
+ }
+ /// predefined Method
+ static ReliabilityType HistoryCombinatorMethodMult(ReliabilityType A,
+ ReliabilityType B) {
+ return A * B;
+ }
+ /// predefined Method
+ static ReliabilityType HistoryCombinatorMethodAverage(ReliabilityType A,
+ ReliabilityType B) {
+ return (A + B) / 2;
+ }
- /// predefined method
- static std::vector<ConfOrRel>
- FeedbackCombinatorMethodAverage(std::vector<ConfOrRel> A,
- std::vector<ConfOrRel> B) {
- return average(A, B);
- }
- /// predefined method
- static std::vector<ConfOrRel>
- FeedbackCombinatorMethodMin(std::vector<ConfOrRel> A,
- std::vector<ConfOrRel> B) {
- return min(A, B);
- }
- /// predefined method
- static std::vector<ConfOrRel>
- FeedbackCombinatorMethodMax(std::vector<ConfOrRel> A,
- std::vector<ConfOrRel> B) {
- return max(A, B);
- }
- /// predefined method
- static std::vector<ConfOrRel>
- FeedbackCombinatorMethodMult(std::vector<ConfOrRel> A,
- std::vector<ConfOrRel> B) {
- return mult(A, B);
- }
+ /// predefined method
+ static std::vector<ConfOrRel>
+ FeedbackCombinatorMethodAverage(std::vector<ConfOrRel> A,
+ std::vector<ConfOrRel> B) {
+ return average(A, B);
+ }
+ /// predefined method
+ static std::vector<ConfOrRel>
+ FeedbackCombinatorMethodMin(std::vector<ConfOrRel> A,
+ std::vector<ConfOrRel> B) {
+ return min(A, B);
+ }
+ /// predefined method
+ static std::vector<ConfOrRel>
+ FeedbackCombinatorMethodMax(std::vector<ConfOrRel> A,
+ std::vector<ConfOrRel> B) {
+ return max(A, B);
+ }
+ /// predefined method
+ static std::vector<ConfOrRel>
+ FeedbackCombinatorMethodMult(std::vector<ConfOrRel> A,
+ std::vector<ConfOrRel> B) {
+ return mult(A, B);
+ }
- /// Predefined combination method for possible Identifiers
- static std::vector<ConfOrRel>
- PossibleIdentifierCombinationMethodMin(std::vector<ConfOrRel> A,
- ReliabilityType B) {
- return min(A, B);
- }
- /// Predefined combination method for possible Identifiers
- static std::vector<ConfOrRel>
- PossibleIdentifierCombinationMethodMax(std::vector<ConfOrRel> A,
- ReliabilityType B) {
- return max(A, B);
- }
+ /// Predefined combination method for possible Identifiers
+ static std::vector<ConfOrRel>
+ PossibleIdentifierCombinationMethodMin(std::vector<ConfOrRel> A,
+ ReliabilityType B) {
+ return min(A, B);
+ }
+ /// Predefined combination method for possible Identifiers
+ static std::vector<ConfOrRel>
+ PossibleIdentifierCombinationMethodMax(std::vector<ConfOrRel> A,
+ ReliabilityType B) {
+ return max(A, B);
+ }
- /// Predefined combination method for possible Identifiers
- static std::vector<ConfOrRel>
- PossibleIdentifierCombinationMethodAverage(std::vector<ConfOrRel> A,
- ReliabilityType B) {
- return average(A, B);
- }
+ /// Predefined combination method for possible Identifiers
+ static std::vector<ConfOrRel>
+ PossibleIdentifierCombinationMethodAverage(std::vector<ConfOrRel> A,
+ ReliabilityType B) {
+ return average(A, B);
+ }
- /// Predefined combination method for possible Identifiers
- static std::vector<ConfOrRel>
- PossibleIdentifierCombinationMethodMult(std::vector<ConfOrRel> A,
- ReliabilityType B) {
- return mult(A, B);
- }
+ /// Predefined combination method for possible Identifiers
+ static std::vector<ConfOrRel>
+ PossibleIdentifierCombinationMethodMult(std::vector<ConfOrRel> A,
+ ReliabilityType B) {
+ return mult(A, B);
+ }
- /// The predefined min combinator method
- static ReliabilityType combinationMin(ReliabilityType A, ReliabilityType B) {
- return std::min(A, B);
- }
+ /// The predefined min combinator method
+ static ReliabilityType combinationMin(ReliabilityType A,
+ ReliabilityType B) {
+ return std::min(A, B);
+ }
- /// The predefined max combinator method
- static ReliabilityType combinationMax(ReliabilityType A, ReliabilityType B) {
- return std::max(A, B);
- }
+ /// The predefined max combinator method
+ static ReliabilityType combinationMax(ReliabilityType A,
+ ReliabilityType B) {
+ return std::max(A, B);
+ }
- /// The predefined average combinator method
- static ReliabilityType combinationAverage(ReliabilityType A,
- ReliabilityType B) {
- return (A + B) / 2;
- }
+ /// The predefined average combinator method
+ static ReliabilityType combinationAverage(ReliabilityType A,
+ ReliabilityType B) {
+ return (A + B) / 2;
+ }
- /// The predefined average combinator method
- static ReliabilityType combinationMult(ReliabilityType A, ReliabilityType B) {
- return A * B;
- }
+ /// The predefined average combinator method
+ static ReliabilityType combinationMult(ReliabilityType A,
+ ReliabilityType B) {
+ return A * B;
+ }
+ };
+ // ----------------------------------------------------------------
+ // Stored Values
+ // ----------------------------------------------------------------
private:
std::vector<std::vector<ConfOrRel>> History;
std::size_t HistoryMaxSize;
std::vector<ConfOrRel> ValuesFromMaster;
SensorValueType previousSensorValue;
unsigned int valueSetCounter;
std::vector<IdentifierType> States;
bool PreviousSensorValueExists = false;
- std::unique_ptr<RangeConfidence<ReliabilityType, IdentifierType, SensorValueType>>
+ std::unique_ptr<
+ RangeConfidence<ReliabilityType, IdentifierType, SensorValueType>>
Confidence;
std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>> Reliability;
std::unique_ptr<Abstraction<SensorValueType, ReliabilityType>>
ReliabilitySlope;
std::unique_ptr<Abstraction<std::size_t, ReliabilityType>> TimeConfidence;
// combination functions
ReliabilityType (*InputReliabilityCombinator)(
- ReliabilityType, ReliabilityType) = combinationMin;
+ ReliabilityType, ReliabilityType) = predefinedMethods::combinationMin;
std::vector<ConfOrRel> (*PossibleIdentifierCombinationMethod)(
- std::vector<ConfOrRel>,
- ReliabilityType) = PossibleIdentifierCombinationMethodMin;
+ std::vector<ConfOrRel>, ReliabilityType) =
+ predefinedMethods::PossibleIdentifierCombinationMethodMin;
std::vector<ConfOrRel> (*FeedbackCombinatorMethod)(std::vector<ConfOrRel>,
std::vector<ConfOrRel>) =
- FeedbackCombinatorMethodAverage;
+ predefinedMethods::FeedbackCombinatorMethodAverage;
ReliabilityType (*HistoryCombinatorMethod)(ReliabilityType, ReliabilityType) =
- HistoryCombinatorMethodMax;
+ predefinedMethods::HistoryCombinatorMethodMax;
- /*--------------------------------- needed Functions
- * -----------------------------------------------------*/
+ // ---------------------------------------------------------------------------
+ // needed Functions
+ // ---------------------------------------------------------------------------
/// returns the Reliability
/// \param actualValue The Value of the Sensor
/// \param lastValue of the Sensor this is stored in the class
/// \param valueSetCounter It has an effect on the difference of the current
/// and last value This might not be needed anymore
/// \brief it returns the combination the \c Reliability function and \c
/// ReliabilitySlope if the previous value exists. if it doesn't it only
/// returns the \c Reliability function value.
ReliabilityType getReliability(SensorValueType actualValue,
SensorValueType lastValue,
unsigned int valueSetCounter) {
ReliabilityType relAbs = Reliability->operator()(actualValue);
if (PreviousSensorValueExists) {
ReliabilityType relSlo = ReliabilitySlope->operator()(
(lastValue - actualValue) / (SensorValueType)valueSetCounter);
return InputReliabilityCombinator(relAbs, relSlo);
} else
return relAbs;
}
/// adapts the possible Identifiers by checking the History and combines those
/// values. currently with max
/// \brief combines the historic values with the \c TimeConfidence function
/// and returns the maximum Reliability for all Identifiers.
std::vector<ConfOrRel> getAllPossibleIdentifiersBasedOnHistory() {
// iterate through all history entries
std::size_t posInHistory = 0;
std::vector<ConfOrRel> possibleIdentifiers;
for (auto pShE = History.begin(); pShE < History.end();
pShE++, posInHistory++) {
// iterate through all possible Identifiers of each history entry
for (ConfOrRel &pSh : *pShE) {
IdentifierType historyIdentifier = pSh.Identifier;
ReliabilityType historyConf = pSh.Reliability;
historyConf = historyConf * TimeConfidence->operator()(posInHistory);
bool foundIdentifier = false;
for (ConfOrRel &pS : possibleIdentifiers) {
if (pS.Identifier == historyIdentifier) {
pS.Reliability =
HistoryCombinatorMethod(pS.Reliability, historyConf);
foundIdentifier = true;
}
}
if (foundIdentifier == false) {
ConfOrRel possibleIdentifier;
possibleIdentifier.Identifier = historyIdentifier;
possibleIdentifier.Reliability = historyConf;
possibleIdentifiers.push_back(possibleIdentifier);
}
}
}
return possibleIdentifiers;
}
/// saves the Identifiers in the History
- /// \brief It checks the incoming Identifiers if any have a Reliability greater
- /// than 0.5 all of them get saved inside the History and then the
+ /// \brief It checks the incoming Identifiers if any have a Reliability
+ /// greater than 0.5 all of them get saved inside the History and then the
/// History get shortened to the maximal length. It only saves the Value if
/// the History is empty.
///
/// \param actualPossibleIdentifiers The Identifiers which should be saved
///
/// \note Does the History really make sense if the values are to small it
/// only stores something if it's empty and not if it isn't completely filled
void saveInHistory(std::vector<ConfOrRel> actualPossibleIdentifiers) {
- // check if the reliability of at least one possible Identifier is high enough
+ // check if the reliability of at least one possible Identifier is high
+ // enough
bool atLeastOneRelIsHigh = false;
for (ConfOrRel pS : actualPossibleIdentifiers) {
if (pS.Reliability > 0.5) {
atLeastOneRelIsHigh = true;
}
}
- // save possible Identifiers if at least one possible Identifier is high enough (or if
- // the history is empty)
+ // save possible Identifiers if at least one possible Identifier is high
+ // enough (or if the history is empty)
if (History.size() < 1 || atLeastOneRelIsHigh == true) {
History.insert(History.begin(), actualPossibleIdentifiers);
// if history size is higher than allowed, save oldest element
while (History.size() > HistoryMaxSize) {
// delete possibleIdentifierHistory.back();
History.pop_back();
}
}
}
};
} // namespace agent
} // namespace rosa
#endif // !ROSA_AGENT_ReliabilityConfidenceCombinator_H

File Metadata

Mime Type
text/x-diff
Expires
Sun, Mar 16, 11:00 AM (1 d, 21 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
129151
Default Alt Text
(50 KB)

Event Timeline