diff --git a/include/rosa/agent/History.hpp b/include/rosa/agent/History.hpp index a10bb1e..8cca4a5 100644 --- a/include/rosa/agent/History.hpp +++ b/include/rosa/agent/History.hpp @@ -1,613 +1,615 @@ //===-- rosa/agent/History.hpp ----------------------------------*- C++ -*-===// // // The RoSA Framework // // Distributed under the terms and conditions of the Boost Software License 1.0. // See accompanying file LICENSE. // // If you did not receive a copy of the license file, see // http://www.boost.org/LICENSE_1_0.txt. // //===----------------------------------------------------------------------===// /// /// \file rosa/agent/History.hpp /// /// \author David Juhasz (david.juhasz@tuwien.ac.at) /// /// \date 2017 /// /// \brief Definition of *history* *functionality*. /// //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_HISTORY_HPP #define ROSA_AGENT_HISTORY_HPP #include "rosa/agent/Functionality.h" #include "rosa/config/config.h" #include "rosa/support/debug.hpp" #include "rosa/support/type_helper.hpp" #include #include #include #include #include namespace rosa { namespace agent { // @benedikt: todo: assert in history, which checks if push_back worked /// Retention policies defining what a \c rosa::agent::History instance should /// do when the number of recorded entries reached its capacity. enum class HistoryPolicy { SRWF, ///< Stop Recording When Full -- no new entry is recorded when full FIFO, ///< First In First Out -- overwrite the earliest entry with a new one LIFO ///< Last In First Out -- overwrite the latest entry with a new one }; template class History : public Functionality { public: History(void) noexcept = default; /// Destroys \p this object. virtual ~History(void) = default; /// Tells the retention policy applied to \p this object. /// /// \return \c rosa::agent::History::P static constexpr HistoryPolicy policy(void) noexcept { return P; } /// Tells how many entries may be recorded by \c this object. /// /// \note The number of entries that are actually recorded may be smaller. /// /// \return The max number of entries that may be recorded virtual size_t maxLength(void) const noexcept = 0; /// Tells how many entries are currently recorded by \p this object. /// /// \return number of entries currently recorded by \p this object. /// /// \post The returned value cannot be larger than the capacity of \p this /// object:\code /// 0 <= numberOfEntries() && numberOfEntries <= lengthOfHistory() /// \endcode virtual size_t numberOfEntries(void) const noexcept = 0; /// Tells if \p this object has not recorded anything yet. /// /// \return if \p this object has no entries recorded bool empty(void) const noexcept { return numberOfEntries() == 0; } /// Tells if the history reached it's maximum length /// /// \return if the history reached it's maximum length. bool full(void) const noexcept { return numberOfEntries() == maxLength(); } /// Gives a constant lvalue reference to an entry stored in \p this object. /// /// \note The recorded entries are indexed starting from the latest one. /// /// \param I the index at which the stored entry to take from /// /// \pre \p I is a valid index:\code /// 0 <= I && I < numberOfEntries() /// \endcode virtual const T &entry(const size_t I = 0) const noexcept = 0; /// Removes all entries recorded in \p this object. virtual void clear() noexcept = 0; private: /// Pushes a new entry into the history. /// /// \note The earliest entry gets overwritten if the history is full. /// /// \param V value to push into the history virtual void pushBack(const T &V) noexcept = 0; /// Replaces the most recent entry in the history. /// /// \param V value to replace the most current value with virtual void replaceFront(const T &V) noexcept = 0; public: /// Adds a new entry to \p this object and tells if the operation was /// successful. /// /// \note Success of the operation depends on the actual policy. /// /// \param V value to store /// /// \return if \p V was successfully stored bool addEntry(const T &V) noexcept { switch (P) { default: ROSA_CRITICAL("unkown HistoryPolicy"); case HistoryPolicy::LIFO: if (full()) { replaceFront(V); return true; } case HistoryPolicy::SRWF: if (full()) { return false; } // \note Fall through to FIFO which unconditionally pushes the new entry. case HistoryPolicy::FIFO: // FIFO and SRWF not full. pushBack(V); return true; } } /// Tells the trend set by the entries recorded by \p this object. /// /// The number of steps to go back when calculating the trend is defined as /// argument to the function. /// /// \note The number of steps that can be made is limited by the number of /// entries recorded by \p this object. /// /// \note The function is made a template only to be able to use /// \c std::enable_if. /// /// \tparam X always use the default! /// /// \param D number of steps to go back in *history* /// /// \return trend set by analyzed entries /// /// \pre Statically, \p this object stores signed arithmetic values:\code /// std::is_arithmetic::value && std::is_signed::value /// \endcode Dynamically, \p D is a valid number of steps to take:\code /// 0 <= D && D < lengthOfHistory() /// \endcode template typename std::enable_if< std::is_arithmetic::value && std::is_signed::value, X>::type trend(const size_t D) const noexcept { STATIC_ASSERT((std::is_same::value), "not default template arg"); ASSERT(0 <= D && D < maxLength()); // Boundary check. if (numberOfEntries() < 2 || D < 1) { // No entries for computing trend. return {}; // Zero element of \p T } else { // Here at least two entries. // \c S is the number of steps that can be done. const size_t S = std::min(numberOfEntries() - 1, D); size_t I = S; // Compute trend with linear regression. size_t SumIndices = 0; T SumEntries = {}; T SumSquareEntries = {}; T SumProduct = {}; while (I > 0) { // \note Indexing for the regression starts in the past. const size_t Index = S - I; const T Entry = entry(--I); SumIndices += Index; SumEntries += Entry; SumSquareEntries += Entry * Entry; SumProduct += Entry * Index; } return (SumProduct * S - SumEntries * SumIndices) / (SumSquareEntries * S - SumEntries * SumEntries); } } /// Tells the average absolute difference between consecutive entries recorded /// by \p this object /// The number of steps to go back when calculating the average is defined as /// argument to the function. /// /// \note The number of steps that can be made is limited by the number of /// entries recorded by \p this object. /// /// \note The function is made a template only to be able to use /// \c std::enable_if. /// /// \tparam X always use the default! /// /// \param D number of steps to go back in *history* /// /// \pre Statically, \p this object stores arithmetic values:\code /// std::is_arithmetic::value /// \endcode Dynamically, \p D is a valid number of steps to take:\code /// 0 <= D && D < lengthOfHistory() /// \endcode template typename std::enable_if::value, size_t>::type averageAbsDiff(const size_t D) const noexcept { STATIC_ASSERT((std::is_same::value), "not default template arg"); ASSERT(0 <= D && D < maxLength()); // Boundary check. if (numberOfEntries() < 2 || D < 1) { // No difference to average. return {}; // Zero element of \p T } else { // Here at least two entries. // \c S is the number of steps that can be done. const size_t S = std::min(numberOfEntries() - 1, D); // Sum up differences as non-negative values only, hence using an // unsigned variable for that. size_t Diffs = {}; // Init to zero. // Count down entry indices and sum up all the absolute differences. size_t I = S; T Last = entry(I); while (I > 0) { T Next = entry(--I); Diffs += Last < Next ? Next - Last : Last - Next; Last = Next; } // Return the average of the summed differences. return Diffs / S; } } /// Tells the average of all entries recorded by \p this object /// /// \tparam R type of the result template R average() const noexcept { R Average = 0; for (size_t I = 0; I < numberOfEntries(); I++) { Average += entry(I); } Average /= numberOfEntries(); return Average; } /// Tells the sigma of all entries recorded by \p this object /// /// \tparam R type of the result template R sigma() const noexcept { R Average = average(); R Sigma = 0; for (size_t I = 0; I < numberOfEntries(); I++) { Sigma += pow((entry(I)-Average),2); } Sigma = sqrt(1.0/numberOfEntries()*Sigma); return Sigma; } - - // Experiment - // Note from Benedikt: I think this will not return the median because the - // history is not sorted - template R median() const noexcept { - if (numberOfEntries() % 2 == 0) { - return (entry(numberOfEntries() / 2 - 1) + entry(numberOfEntries() / 2)) / - 2; - } else { - return entry(numberOfEntries() / 2); - } - } }; /// Implements *history* by recording and storing values. /// The length of the underlying std::array is static and must be set at /// compile-time /// /// \note Not thread-safe implementation, which should not be a problem as any /// instance of \c rosa::agent::Functionality is an internal component of a /// \c rosa::Agent, which is the basic unit of concurrency. /// /// \tparam T type of values to store /// \tparam N number of values to store at most /// \tparam P retention policy to follow when capacity is reached /// /// \invariant The size of the underlying \c std::array is `N + 1`:\code /// max_size() == N + 1 && N == max_size() - 1 /// \endcode template class StaticLengthHistory : public History, private std::array { // Bring into scope inherited functions that are used. using std::array::max_size; using std::array::operator[]; /// The index of the first data element in the circular buffer. size_t Data; /// The index of the first empty slot in the circular buffer. size_t Space; public: using History::policy; using History::empty; using History::full; using History::addEntry; using History::trend; using History::averageAbsDiff; /// Creates an instances by initializing the indices for the circular buffer. StaticLengthHistory(void) noexcept : Data(0), Space(0) {} /// Destroys \p this object. ~StaticLengthHistory(void) override = default; /// Tells how many entries may be recorded by \c this object. /// /// \note The number of entries that are actually recorded may be smaller. /// /// \return \c rosa::agent::History::N size_t maxLength(void) const noexcept override { return N; } /// Tells how many entries are currently recorded by \p this object. /// /// \return number of entries currently recorded by \p this object. /// /// \post The returned value cannot be larger than the capacity of \p this /// object:\code /// 0 <= numberOfEntries() && numberOfEntries <= lengthOfHistory() /// \endcode size_t numberOfEntries(void) const noexcept override { return Data <= Space ? Space - Data : max_size() - Data + Space; } /// Gives a constant lvalue reference to an entry stored in \p this object. /// /// \note The recorded entries are indexed starting from the latest one. /// /// \param I the index at which the stored entry to take from /// /// \pre \p I is a valid index:\code /// 0 <= I && I < numberOfEntries() /// \endcode const T &entry(const size_t I = 0) const noexcept override { ASSERT(0 <= I && I < numberOfEntries()); // Boundary check. // Position counted back from the last recorded entry. typename std::make_signed::type Pos = Space - (1 + I); // Actual index wrapped around to the end of the buffer if negative. return (*this)[Pos >= 0 ? Pos : max_size() + Pos]; } /// Removes all entries recorded in \p this object. void clear() noexcept override { Data = 0; Space = 0; } private: /// Pushes a new entry into the circular buffer. /// /// \note The earliest entry gets overwritten if the buffer is full. /// /// \param V value to push into the buffer void pushBack(const T &V) noexcept override { // Store value to the first empty slot and step Space index. (*this)[Space] = V; Space = (Space + 1) % max_size(); if (Data == Space) { // Buffer was full, step Data index. Data = (Data + 1) % max_size(); } } /// Replaces the most recent entry in the history. /// /// \param V value to replace the most current value with void replaceFront(const T &V) noexcept override { (*this)[(Space - 1) % max_size()] = V; } }; /// Adds a new entry to a \c rosa::agent::History instance. /// /// \note The result of \c rosa::agent::History::addEntry is ignored. /// /// \tparam T type of values stored in \p H /// \tparam N number of values \p H is able to store /// \tparam P retention policy followed by \p H when capacity is reached /// /// \param H to add a new entry to /// \param V value to add to \p H /// /// \return \p H after adding \p V to it template StaticLengthHistory &operator<<(StaticLengthHistory &H, const T &V) noexcept { H.addEntry(V); return H; } /// Implements *DynamicLengthHistory* by recording and storing values. /// /// \note Not thread-safe implementation, which should not be a problem as any /// instance of \c rosa::agent::Functionality is an internal component of a /// \c rosa::Agent, which is the basic unit of concurrency. /// /// \tparam T type of values to store /// \tparam P retention policy to follow when capacity is reached template class DynamicLengthHistory : public History, private std::vector { private: // Bring into scope inherited functions that are used. using std::vector::size; using std::vector::resize; using std::vector::push_back; using std::vector::pop_back; using std::vector::max_size; /// The current length of the DynamicLengthHistory. size_t Length; public: // Bring into scope inherited functions that are used. using std::vector::erase; using std::vector::begin; using std::vector::end; using std::vector::rbegin; using std::vector::rend; using std::vector::operator[]; // Bring into scope inherited functions that are used. using History::policy; using History::empty; using History::full; using History::addEntry; using History::trend; using History::averageAbsDiff; /// Creates an instances by setting an initial length DynamicLengthHistory(size_t Length) noexcept : Length(Length) {} /// Destroys \p this object. ~DynamicLengthHistory(void) override = default; /// Tells how many entries may be recorded by \c this object. /// /// \note The number of entries that are actually recorded may be smaller. /// /// \return \c rosa::agent::DynamicLengthHistory::N size_t maxLength(void) const noexcept override { return Length; } /// Tells how many entries are currently recorded by \p this object. /// /// \return number of entries currently recorded by \p this object. /// /// \post The returned value cannot be larger than the capacity of \p this /// object:\code /// 0 <= numberOfEntries() && numberOfEntries <= /// lengthOfHistory() \endcode size_t numberOfEntries(void) const noexcept override { return size(); } /// Gives a constant lvalue reference to an entry stored in \p this object. /// /// \note The recorded entries are indexed starting from the latest one. /// /// \param I the index at which the stored entry to take from /// /// \pre \p I is a valid index:\code /// 0 <= I && I < numberOfEntries() /// \endcode const T &entry(const size_t I = 0) const noexcept override { ASSERT(0 <= I && I < numberOfEntries()); // Boundary check. return this->operator[](size() - I - 1); } /// Removes all entries recorded in \p this object. void clear() noexcept override { erase(begin(), end()); } /// Sort all entries in ascending order. void sortAscending(void) noexcept { std::sort(begin(), end()); } /// Sort all entries in descending order. void sortDescending(void) noexcept { std::sort(rbegin(), rend()); } /// Delets one element of the history. /// /// \param V the element which shall be deleted. void deleteEntry(T &V) { auto it = std::find(begin(), end(), V); if (it != end()) { erase(it); } } /// Gives back the lowest entry of the history. /// /// \return the lowest entry. In case of an empty history, the maximum value /// of the chosen data type is returned. T lowestEntry() { auto it = std::min_element(begin(), end()); if (it == end()) { return std::numeric_limits::max(); } else { return *it; } } /// Gives back the highest entry of the history. /// /// \return the highest entry. In case of an empty history, the minimum value /// of the chosen data type is returned. T highestEntry() { auto it = std::max_element(begin(), end()); if (it == end()) { return std::numeric_limits::min(); } else { return *it; } } private: /// Pushes a new entry into the circular buffer. /// /// \note The earliest entry gets overwritten if the buffer is full. /// /// \param V value to push into the buffer void pushBack(const T &V) noexcept override { if (full()) { erase(begin()); } push_back(V); } /// Replaces the most recent entry in the history. /// /// \param V value to replace the most current value with void replaceFront(const T &V) noexcept override { (void)pop_back(); push_back(V); } public: /// Resizes the History length. If the new length is smaller than the number /// of currently stored values, values are deleted according to the /// HistoryPolicy. /// /// @param NewLength The new Length of the History. void setLength(size_t NewLength) noexcept { Length = NewLength; if (NewLength < numberOfEntries()) { switch (P) { default: ROSA_CRITICAL("unkown HistoryPolicy"); case HistoryPolicy::LIFO: case HistoryPolicy::SRWF: // Delete last numberOfEntries() - NewLength items from the back erase(begin() + NewLength, end()); break; case HistoryPolicy::FIFO: // Delete last numberOfEntries() - NewLength items from the front erase(begin(), begin() + (numberOfEntries() - NewLength)); break; } } this->resize(Length); } + + // Calculates the median of the history + // \return the median of the history + template R median() noexcept { + sortAscending(); + if (numberOfEntries() == 0) { + return 0; + } else if (numberOfEntries() % 2 == 0) { + return (entry(numberOfEntries() / 2 - 1) + entry(numberOfEntries() / 2)) / + 2; + } else { + return entry(numberOfEntries() / 2); + } + } }; /// Adds a new entry to a \c rosa::agent::DynamicLengthHistory instance. /// /// \note The result of \c rosa::agent::DynamicLengthHistory::addEntry is /// ignored. /// /// \tparam T type of values stored in \p H /// \tparam P retention policy followed by \p H when capacity is reached /// /// \param H to add a new entry to /// \param V value to add to \p H /// /// \return \p H after adding \p V to it template DynamicLengthHistory &operator<<(DynamicLengthHistory &H, const T &V) noexcept { H.addEntry(V); return H; } } // End namespace agent } // End namespace rosa #endif // ROSA_AGENT_HISTORY_HPP diff --git a/include/rosa/agent/SignalState.hpp b/include/rosa/agent/SignalState.hpp index ccad719..2cfc654 100644 --- a/include/rosa/agent/SignalState.hpp +++ b/include/rosa/agent/SignalState.hpp @@ -1,684 +1,684 @@ //===-- rosa/agent/SignalState.hpp ------------------------------*- C++ -*-===// // // The RoSA Framework // //===----------------------------------------------------------------------===// /// /// \file rosa/agent/SignalState.hpp /// /// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at) /// /// \date 2019 /// /// \brief Definition of *signal state* *functionality*. /// //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_SIGNALSTATE_HPP #define ROSA_AGENT_SIGNALSTATE_HPP #include "rosa/agent/DistanceMetrics.hpp" #include "rosa/agent/FunctionAbstractions.hpp" #include "rosa/agent/Functionality.h" #include "rosa/agent/History.hpp" #include "rosa/agent/State.hpp" #include "rosa/support/math.hpp" namespace rosa { namespace agent { /// Signal properties defining the properties of the signal which is monitored /// by \c rosa::agent::SignalStateDetector and is saved in \c /// rosa::agent::SignalStateInformation. enum SignalProperties : uint8_t { INPUT = 0, ///< The signal is an input signal OUTPUT = 1 ///< The signal is an output signal }; /// TODO: write description template struct SignalStateInformation : StateInformation { // Make sure the actual type arguments are matching our expectations. STATIC_ASSERT((std::is_arithmetic::value), "confidence type is not to arithmetic"); /// ConfidenceOfMatchingState is the confidence how good the new sample /// matches the state. CONFDATATYPE ConfidenceOfMatchingState; /// ConfidenceOfMatchingState is the confidence how bad the new sample /// matches the state. CONFDATATYPE ConfidenceOfMismatchingState; /// The SignalProperty saves whether the monitored signal is an input our /// output signal. SignalProperties SignalProperty; /// The SignalStateIsValid saves the number of samples which have been /// inserted into the state after entering it. uint32_t NumberOfInsertedSamplesAfterEntrance; public: SignalStateInformation(unsigned int SignalStateID, SignalProperties _SignalProperty) { this->StateID = SignalStateID; this->SignalProperty = _SignalProperty; this->StateCondition = StateConditions::UNKNOWN; this->NumberOfInsertedSamplesAfterEntrance = 0; this->StateIsValid = false; this->StateJustGotValid = false; this->StateIsValidAfterReentrance = false; this->ConfidenceStateIsValid = 0; this->ConfidenceStateIsInvalid = 0; this->ConfidenceStateIsStable = 0; this->ConfidenceStateIsDrifting = 0; } SignalStateInformation() = default; }; /// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of /// data in that the confidence values are given, \tparam PROCDATATYPE type of /// the relative distance and the type of data in which DABs are saved. template class SignalState : public Functionality { // Make sure the actual type arguments are matching our expectations. STATIC_ASSERT((std::is_arithmetic::value), "input data type not arithmetic"); STATIC_ASSERT((std::is_arithmetic::value), "confidence data type is not to arithmetic"); STATIC_ASSERT( (std::is_arithmetic::value), "process data type (DAB and Relative Distance) is not to arithmetic"); public: // The metric to calculate the distance between two points using DistanceMetricAbstraction = Abstraction, PROCDATATYPE> &; // For the convinience to write a shorter data type name using PartFuncReference = PartialFunction &; // using PartFuncReference2 = ; using StepFuncReference = StepFunction &; private: /// SignalStateInfo is a struct of SignalStateInformation that contains /// information about the current signal state. SignalStateInformation SignalStateInfo; /// The metric to calculate the distance between two points DistanceMetricAbstraction DistanceMetric; /// The FuzzyFunctionSampleMatches is the fuzzy function that gives the /// confidence how good the new sample matches another sample in the sample /// history. PartFuncReference FuzzyFunctionSampleMatches; /// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the /// confidence how bad the new sample matches another sample in the sample /// history. PartFuncReference FuzzyFunctionSampleMismatches; /// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the /// confidence how many samples from the sampe history match the new sample. StepFuncReference FuzzyFunctionNumOfSamplesMatches; /// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives /// the confidence how many samples from the sampe history mismatch the new /// sample. StepFuncReference FuzzyFunctionNumOfSamplesMismatches; /// The FuzzyFunctionSampleValid is the fuzzy function that gives the /// confidence how good one matches another sample in the sample /// history. This is done to evaluate whether a state is valid. PartFuncReference FuzzyFunctionSampleValid; /// The FuzzyFunctionSampleInvalid is the fuzzy function that gives the /// confidence how bad one sample matches another sample in the sample /// history. This is done to evaluate whether a state is invalid. PartFuncReference FuzzyFunctionSampleInvalid; /// The FuzzyFunctionNumOfSamplesValid is the fuzzy function that gives the /// confidence how many samples from the sample history match another sample. /// This is done to evaluate whether a state is valid. StepFuncReference FuzzyFunctionNumOfSamplesValid; /// The FuzzyFunctionNumOfSamplesInvalid is the fuzzy function that gives /// the confidence how many samples from the sample history mismatch another /// sample. This is done to evaluate whether a state is invalid. StepFuncReference FuzzyFunctionNumOfSamplesInvalid; /// The FuzzyFunctionSignalIsDrifting is the fuzzy function that gives the /// confidence how likely it is that the signal (resp. the state of a signal) /// is drifting. PartFuncReference FuzzyFunctionSignalIsDrifting; /// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the /// confidence how likely it is that the signal (resp. the state of a signal) /// is stable (not drifting). PartFuncReference FuzzyFunctionSignalIsStable; /// TODO: description PartialFunction &FuzzyFunctionSignalConditionLookBack; /// TODO: description PartialFunction &FuzzyFunctionSignalConditionHistoryDesicion; /// TODO: description uint32_t DriftLookbackRange; /// SampleHistory is a history in that the last sample values are stored. DynamicLengthHistory SampleHistory; /// DAB is a (usually) small history of the last sample values of which a /// average is calculated if the DAB is full. DynamicLengthHistory DAB; /// DABHistory is a history in that the last DABs (to be exact, the averages /// of the last DABs) are stored. DynamicLengthHistory DABHistory; /// LowestConfidenceMatchingHistory is a history in that the lowest confidence /// for the current sample matches all history samples are saved. DynamicLengthHistory LowestConfidenceMatchingHistory; /// HighestConfidenceMatchingHistory is a history in that the highest /// confidence for the current sample matches all history samples are saved. DynamicLengthHistory HighestConfidenceMismatchingHistory; /// TempConfidenceMatching is the confidence how good a sample matches the /// state. However, the value of this variable is only needed temporarly. CONFDATATYPE TempConfidenceMatching = 0; /// TempConfidenceMatching is the confidence how bad a sample matches the /// state. However, the value of this variable is only needed temporarly. CONFDATATYPE TempConfidenceMismatching = 0; public: /// Creates an instance by setting all parameters /// \param SignalStateID The Id of the SignalStateinfo \c /// SignalStateInformation. /// /// \param DistanceMetric the distance metric to calculate the distance /// between two points /// /// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the /// fuzzy function that gives the confidence how good the new sample matches /// another sample in the sample history. /// /// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is /// the fuzzy function that gives the confidence how bad the new sample /// matches another sample in the sample history. /// /// \param FuzzyFunctionNumOfSamplesMatches The /// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the /// confidence how many samples from the sampe history match the new sample. /// /// \param FuzzyFunctionNumOfSamplesMismatches The /// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the /// confidence how many samples from the sampe history mismatch the new /// sample. /// /// \param FuzzyFunctionSignalIsDrifting The FuzzyFunctionSignalIsDrifting is /// the fuzzy function that gives the confidence how likely it is that the /// signal (resp. the state of a signal) is drifting. /// /// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the /// fuzzy function that gives the confidence how likely it is that the signal /// (resp. the state of a signal) is stable (not drifting). /// /// \param SampleHistorySize Size of the Sample History \c /// DynamicLengthHistory . SampleHistory is a history in that the last sample /// values are stored. /// /// \param DABSize Size of DAB \c DynamicLengthHistory . DAB is a (usually) /// small history of the last sample values of which a average is calculated /// if the DAB is full. /// /// \param DABHistorySize Size of the DABHistory \c DynamicLengthHistory . /// DABHistory is a history in that the last DABs (to be exact, the averages /// of the last DABs) are stored. /// SignalState( uint32_t SignalStateID, SignalProperties SignalProperty, uint32_t SampleHistorySize, uint32_t DABSize, uint32_t DABHistorySize, DistanceMetricAbstraction DistanceMetric, PartFuncReference FuzzyFunctionSampleMatches, PartFuncReference FuzzyFunctionSampleMismatches, StepFuncReference FuzzyFunctionNumOfSamplesMatches, StepFuncReference FuzzyFunctionNumOfSamplesMismatches, PartFuncReference FuzzyFunctionSampleValid, PartFuncReference FuzzyFunctionSampleInvalid, StepFuncReference FuzzyFunctionNumOfSamplesValid, StepFuncReference FuzzyFunctionNumOfSamplesInvalid, // SAVE CHANGES PartFuncReference FuzzyFunctionSignalIsDrifting, PartFuncReference FuzzyFunctionSignalIsStable, PartialFunction &FuzzyFunctionSignalConditionLookBack, // - SAVE CHANGES PartialFunction &FuzzyFunctionSignalConditionHistoryDesicion, uint32_t DriftLookbackRange) noexcept : SignalStateInfo{SignalStateID, SignalProperty}, DistanceMetric(DistanceMetric), FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches), FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches), FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches), FuzzyFunctionNumOfSamplesMismatches( FuzzyFunctionNumOfSamplesMismatches), FuzzyFunctionSampleValid(FuzzyFunctionSampleValid), FuzzyFunctionSampleInvalid(FuzzyFunctionSampleInvalid), FuzzyFunctionNumOfSamplesValid(FuzzyFunctionNumOfSamplesValid), FuzzyFunctionNumOfSamplesInvalid(FuzzyFunctionNumOfSamplesInvalid), FuzzyFunctionSignalIsDrifting(FuzzyFunctionSignalIsDrifting), FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable), // SAVE CHANGES FuzzyFunctionSignalConditionLookBack( FuzzyFunctionSignalConditionLookBack), FuzzyFunctionSignalConditionHistoryDesicion( FuzzyFunctionSignalConditionHistoryDesicion), DriftLookbackRange(DriftLookbackRange), // - SAVE CHANGES SampleHistory(SampleHistorySize), DAB(DABSize), DABHistory(DABHistorySize), LowestConfidenceMatchingHistory(SampleHistorySize), HighestConfidenceMismatchingHistory(SampleHistorySize) {} /// Destroys \p this object. ~SignalState(void) = default; void leaveSignalState(void) noexcept { DAB.clear(); SignalStateInfo.NumberOfInsertedSamplesAfterEntrance = 0; SignalStateInfo.StateIsValidAfterReentrance = false; } SignalStateInformation insertSample(INDATATYPE Sample) noexcept { SignalStateInfo.NumberOfInsertedSamplesAfterEntrance++; validateSignalState(Sample); SampleHistory.addEntry(Sample); DAB.addEntry(Sample); if (DAB.full()) { // TODO: make soring inside of median // TODO: make better outlier removal! // std::sort(DAB.begin(), DAB.end()); // DAB.erase(DAB.begin(), DAB.begin() + 1); // DAB.erase(DAB.end() - 1, DAB.end()); // PROCDATATYPE AvgOfDAB = DAB.template median(); - PROCDATATYPE AvgOfDAB = DAB.template average(); + PROCDATATYPE AvgOfDAB = DAB.template median(); DABHistory.addEntry(AvgOfDAB); DAB.clear(); } FuzzyFunctionNumOfSamplesMatches.setRightLimit( static_cast(SampleHistory.numberOfEntries())); FuzzyFunctionNumOfSamplesMismatches.setRightLimit( static_cast(SampleHistory.numberOfEntries())); checkSignalStability(); SignalStateInfo.ConfidenceOfMatchingState = TempConfidenceMatching; SignalStateInfo.ConfidenceOfMismatchingState = TempConfidenceMismatching; return SignalStateInfo; } /// Gives the confidence how likely the new sample matches the signal state. /// /// \param Sample is the actual sample of the observed signal. /// /// \return the confidence of the new sample is matching the signal state. CONFDATATYPE confidenceSampleMatchesSignalState(INDATATYPE Sample) noexcept { CONFDATATYPE ConfidenceOfBestCase = 0; DynamicLengthHistory RelativeDistanceHistory(SampleHistory.maxLength()); // Calculate distances to all history samples. for (auto &HistorySample : SampleHistory) { PROCDATATYPE RelativeDistance = DistanceMetric(std::make_pair(Sample, HistorySample)); RelativeDistanceHistory.addEntry(RelativeDistance); } // Sort all calculated distances so that the lowest distance (will get the // highest confidence) is at the beginning. RelativeDistanceHistory.sortAscending(); CONFDATATYPE ConfidenceOfWorstFittingSample = 1; // Case 1 means that one (the best fitting) sample of the history is // compared with the new sample. Case 2 means the two best history samples // are compared with the new sample. And so on. // TODO (future): to accelerate . don't start with 1 start with some higher // number because a low number (i guess lower than 5) will definetely lead // to a low confidence. except the history is not full. // Case 1 means that one (the best fitting) sample of the history is // compared with the new sample. Case 2 means the two best history samples // are compared with the new sample. And so on. for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries(); Case++) { CONFDATATYPE ConfidenceFromRelativeDistance; if (std::isinf(RelativeDistanceHistory[Case])) { // TODO (future): if fuzzy is defined in a way that infinity is not 0 it // would be a problem. ConfidenceFromRelativeDistance = 0; } else { ConfidenceFromRelativeDistance = FuzzyFunctionSampleMatches(RelativeDistanceHistory[Case]); } ConfidenceOfWorstFittingSample = fuzzyAND(ConfidenceOfWorstFittingSample, ConfidenceFromRelativeDistance); ConfidenceOfBestCase = fuzzyOR(ConfidenceOfBestCase, fuzzyAND(ConfidenceOfWorstFittingSample, FuzzyFunctionNumOfSamplesMatches( static_cast(Case) + 1))); } TempConfidenceMatching = ConfidenceOfBestCase; return ConfidenceOfBestCase; } /// Gives the confidence how likely the new sample mismatches the signal /// state. /// /// \param Sample is the actual sample of the observed signal. /// /// \return the confidence of the new sample is mismatching the signal state. CONFDATATYPE confidenceSampleMismatchesSignalState(INDATATYPE Sample) noexcept { float ConfidenceOfWorstCase = 1; DynamicLengthHistory RelativeDistanceHistory(SampleHistory.maxLength()); // Calculate distances to all history samples. for (auto &HistorySample : SampleHistory) { RelativeDistanceHistory.addEntry( DistanceMetric(std::make_pair(Sample, HistorySample))); } // Sort all calculated distances so that the highest distance (will get the // lowest confidence) is at the beginning. RelativeDistanceHistory.sortDescending(); CONFDATATYPE ConfidenceOfBestFittingSample = 0; // TODO (future): to accelerate -> don't go until end. Confidences will only // get higher. See comment in "CONFDATATYPE // confidenceSampleMatchesSignalState(INDATATYPE Sample)". // Case 1 means that one (the worst fitting) sample of the history is // compared with the new sample. Case 2 means the two worst history samples // are compared with the new sample. And so on. for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries(); Case++) { CONFDATATYPE ConfidenceFromRelativeDistance; if (std::isinf(RelativeDistanceHistory[Case])) { ConfidenceFromRelativeDistance = 1; } else { ConfidenceFromRelativeDistance = FuzzyFunctionSampleMismatches(RelativeDistanceHistory[Case]); } ConfidenceOfBestFittingSample = fuzzyOR(ConfidenceOfBestFittingSample, ConfidenceFromRelativeDistance); ConfidenceOfWorstCase = fuzzyAND(ConfidenceOfWorstCase, fuzzyOR(ConfidenceOfBestFittingSample, FuzzyFunctionNumOfSamplesMismatches( static_cast(Case) + 1))); } TempConfidenceMismatching = ConfidenceOfWorstCase; return ConfidenceOfWorstCase; } /// Gives information about the current signal state. /// /// \return a struct SignalStateInformation that contains information about /// the current signal state. SignalStateInformation signalStateInformation(void) noexcept { return SignalStateInfo; } private: void validateSignalState(INDATATYPE Sample) { // TODO (future): WorstConfidenceDistance and BestConfidenceDistance could // be set already in "CONFDATATYPE // confidenceSampleMatchesSignalState(INDATATYPE Sample)" and "CONFDATATYPE // confidenceSampleMismatchesSignalState(INDATATYPE Sample)" when the new // sample is compared to all history samples. This would save a lot time // because the comparisons are done only once. However, it has to be asured // that the these two functions are called before the insertation, and the // FuzzyFunctions for validation and matching have to be the same! CONFDATATYPE LowestConfidenceMatching = 1; CONFDATATYPE HighestConfidenceMismatching = 0; for (auto &HistorySample : SampleHistory) { // TODO (future): think about using different fuzzy functions for // validation and matching. LowestConfidenceMatching = fuzzyAND(LowestConfidenceMatching, FuzzyFunctionSampleMatches( DistanceMetric(std::make_pair(Sample, HistorySample)))); HighestConfidenceMismatching = fuzzyOR(HighestConfidenceMismatching, FuzzyFunctionSampleMismatches( DistanceMetric(std::make_pair(Sample, HistorySample)))); } LowestConfidenceMatchingHistory.addEntry(LowestConfidenceMatching); HighestConfidenceMismatchingHistory.addEntry(HighestConfidenceMismatching); LowestConfidenceMatching = LowestConfidenceMatchingHistory.lowestEntry(); HighestConfidenceMismatching = HighestConfidenceMismatchingHistory.highestEntry(); SignalStateInfo.ConfidenceStateIsValid = fuzzyAND(LowestConfidenceMatching, FuzzyFunctionNumOfSamplesValid(static_cast( SignalStateInfo.NumberOfInsertedSamplesAfterEntrance))); SignalStateInfo.ConfidenceStateIsInvalid = fuzzyOR(HighestConfidenceMismatching, FuzzyFunctionNumOfSamplesInvalid(static_cast( SignalStateInfo.NumberOfInsertedSamplesAfterEntrance))); if (SignalStateInfo.ConfidenceStateIsValid > SignalStateInfo.ConfidenceStateIsInvalid) { if (SignalStateInfo.StateIsValid) { SignalStateInfo.StateJustGotValid = false; } else { SignalStateInfo.StateJustGotValid = true; } SignalStateInfo.StateIsValid = true; SignalStateInfo.StateIsValidAfterReentrance = true; } } void checkSignalStability(void) { /* std::cout << "LookbackTest: " << std::endl; for (unsigned int t = 1; t <= DriftLookbackRange + 5; t++) { std::cout << "t=" << t << " -> c=" << FuzzyFunctionSignalConditionLookBack(t) << std::endl; //(*FuzzyFunctionTimeSystemFunctioning)( // static_cast(TimeOfDisparity)); } getchar(); */ SignalStateInfo.ConfidenceStateIsStable = 0; SignalStateInfo.ConfidenceStateIsDrifting = 0; /* std::cout << "ConfidenceStateIsStable (before): " << SignalStateInfo.ConfidenceStateIsStable << std::endl; std::cout << "ConfidenceStateIsDrifting (before): " << SignalStateInfo.ConfidenceStateIsDrifting << std::endl; */ bool DriftDirectionIsUp = true; if (DABHistory.numberOfEntries() >= 2) { // SAVE CHANGES INDATATYPE CurrentDAB = DABHistory[DABHistory.numberOfEntries() - 1]; INDATATYPE DAB2Compare = DABHistory[0]; // ########### TODO HERE: calculating up_down uint32_t DriftDnCounter = 0; uint32_t DriftUpCounter = 0; // EXPERIMENTING for (unsigned int t = 1; t <= DriftLookbackRange && t < DABHistory.numberOfEntries(); t++) { DAB2Compare = DABHistory[DABHistory.numberOfEntries() - (t + 1)]; // TODO: make the following also for distance measurement when comparing // sample with state and validate state /* // sigma correction if (NormalizedDistanceMetric *NormalizableDistanceMetric = dynamic_cast< NormalizedDistanceMetric *>( DistanceMetric)) { // old was safely casted to NewType NormalizableDistanceMetric->setNorm( // TODO: (1) Sigma von Sample // History(!) abholen, (2) irgendwas mit Sigma hier reinschreiben, // und (3) überlegen wegen zweiter History (länger) für // Sigmaberechnung ); } */ float dist = DistanceMetric(std::make_pair(CurrentDAB, DAB2Compare)); // AVG SignalStateInfo.ConfidenceStateIsStable += FuzzyFunctionSignalIsStable(dist); SignalStateInfo.ConfidenceStateIsDrifting += FuzzyFunctionSignalIsDrifting(dist); // TODO: move following outside of the loop with // "if(DriftLookbackRange<=DABHistory.numberOfEntries())" if (t == DriftLookbackRange) { SignalStateInfo.ConfidenceStateIsStable /= DriftLookbackRange; SignalStateInfo.ConfidenceStateIsDrifting /= DriftLookbackRange; } else if (t == DABHistory.numberOfEntries() - 1) { SignalStateInfo.ConfidenceStateIsStable /= DABHistory.numberOfEntries(); SignalStateInfo.ConfidenceStateIsDrifting /= DABHistory.numberOfEntries(); } /* // AND SignalStateInfo.ConfidenceStateIsStable = fuzzyOR(SignalStateInfo.ConfidenceStateIsStable, fuzzyAND(FuzzyFunctionSignalIsStable(dist), FuzzyFunctionSignalConditionLookBack(t))); SignalStateInfo.ConfidenceStateIsDrifting = fuzzyOR(SignalStateInfo.ConfidenceStateIsDrifting, fuzzyAND(FuzzyFunctionSignalIsDrifting(dist), FuzzyFunctionSignalConditionLookBack(t))); */ /* // MULTI SignalStateInfo.ConfidenceStateIsStable = fuzzyOR(SignalStateInfo.ConfidenceStateIsStable, FuzzyFunctionSignalIsStable( relativeDistance( CurrentDAB, DAB2Compare)) * FuzzyFunctionSignalConditionLookBack(t)); SignalStateInfo.ConfidenceStateIsDrifting = fuzzyOR(SignalStateInfo.ConfidenceStateIsDrifting, FuzzyFunctionSignalIsDrifting( relativeDistance( CurrentDAB, DAB2Compare)) * FuzzyFunctionSignalConditionLookBack(t)); */ if (CurrentDAB > DAB2Compare) DriftUpCounter++; else if (CurrentDAB < DAB2Compare) DriftDnCounter++; } // TODO: change something because it is biased if the are equal DriftDirectionIsUp = DriftUpCounter > DriftDnCounter; // following outcommented block was the published code /* SignalStateInfo.ConfidenceStateIsStable = FuzzyFunctionSignalIsStable( relativeDistance(CurrentDAB, DAB2Compare)); SignalStateInfo.ConfidenceStateIsDrifting = FuzzyFunctionSignalIsDrifting( relativeDistance(CurrentDAB, DAB2Compare)); // TODO: think about a better solution with different confidences // (stable, up, down, ...) DriftDirectionIsUp = CurrentDAB > DAB2Compare; */ // - SAVE CHANGES } /* std::cout << "ConfidenceStateIsStable (after): " << SignalStateInfo.ConfidenceStateIsStable << std::endl; std::cout << "ConfidenceStateIsDrifting (after): " << SignalStateInfo.ConfidenceStateIsDrifting << std::endl; */ if (SignalStateInfo.ConfidenceStateIsStable > SignalStateInfo.ConfidenceStateIsDrifting) { SignalStateInfo.StateCondition = StateConditions::STABLE; } else if (SignalStateInfo.ConfidenceStateIsStable < SignalStateInfo.ConfidenceStateIsDrifting) { if (DriftDirectionIsUp) { SignalStateInfo.StateCondition = StateConditions::DRIFTING_UP; } else { SignalStateInfo.StateCondition = StateConditions::DRIFTING_DN; } /* SignalStateInfo.StateCondition = StateConditions::DRIFTING; */ } else { SignalStateInfo.StateCondition = StateConditions::UNKNOWN; } } }; // namespace agent } // namespace agent } // End namespace rosa #endif // ROSA_AGENT_SIGNALSTATE_HPP