diff --git a/apps/ccam/ccam.cpp b/apps/ccam/ccam.cpp index c110fe7..36f5bee 100644 --- a/apps/ccam/ccam.cpp +++ b/apps/ccam/ccam.cpp @@ -1,531 +1,532 @@ //===-- apps/ccam/ccam.cpp --------------------------------------*- C++ -*-===// // // The RoSA Framework -- Application CCAM // // Distributed under the terms and conditions of the Boost Software /// License 1.0. // See accompanying file LICENSE. // // If you did not receive a copy of the license file, see // http://www.boost.org/LICENSE_1_0.txt. // //===----------------------------------------------------------------------===// /// /// \file apps/ccam/ccam.cpp /// /// \author Maximilian Goetzinger (maximilian.goetzinger@tuwien.ac.at) /// \author Benedikt Tutzer (benedikt.tutzer@tuwien.ac.at) /// /// \date 2019 /// /// \brief The application CCAM implements the case study from the paper: /// M. Goetzinger, N. TaheriNejad, H. A. Kholerdi, A. Jantsch, E. Willegger, /// T. Glatzl, A.M. Rahmani, T.Sauter, P. Liljeberg: Model - Free Condition /// Monitoring with Confidence /// /// \todo Clean up source files of this app: add standard RoSA header comment /// for own files and do something with 3rd party files... //===----------------------------------------------------------------------===// #include "rosa/agent/Abstraction.hpp" #include "rosa/agent/Confidence.hpp" #include "rosa/agent/FunctionAbstractions.hpp" #include #include "rosa/config/version.h" #include "rosa/agent/SignalStateDetector.hpp" #include "rosa/agent/SystemStateDetector.hpp" #include "rosa/app/Application.hpp" #include "rosa/support/csv/CSVReader.hpp" #include "rosa/support/csv/CSVWriter.hpp" #include "rosa/app/AppTuple.hpp" #include #include #include #include #include "configuration.h" #include "statehandlerutils.h" using namespace rosa; using namespace rosa::agent; using namespace rosa::app; using namespace rosa::terminal; const std::string AppName = "CCAM"; int main(int argc, char **argv) { LOG_INFO_STREAM << '\n' << library_string() << " -- " << Color::Red << AppName << "app" << Color::Default << '\n'; // // Read the filepath of the config file of the observed system. The filepath // is in the first argument passed to the application. Fuzzy functions etc. // are described in this file. // if (argc < 2) { LOG_ERROR("Specify config File!\nUsage:\n\tccam config.json"); return 1; } std::string ConfigPath = argv[1]; // // Load config file and read in all parameters. Fuzzy functions etc. are // described in this file. // if (!readConfigFile(ConfigPath)) { LOG_ERROR_STREAM << "Could not read config from \"" << ConfigPath << "\"\n"; return 2; } // // Create a CCAM context. // LOG_INFO("Creating Context"); std::unique_ptr AppCCAM = Application::create(AppName); // // Create following function which shall give information if the time gap // between changed input(s) and changed output(s) shows already a malfunction // of the system. // // ____________ // / // / // __________/ // std::shared_ptr> BrokenDelayFunction( new PartialFunction( {{{0, AppConfig.BrokenCounter}, std::make_shared>( 0, 0.f, AppConfig.BrokenCounter, 1.f)}, {{AppConfig.BrokenCounter, std::numeric_limits::max()}, std::make_shared>(1.f, 0.f)}}, 0.f)); // // Create following function which shall give information if the time gap // between changed input(s) and changed output(s) still shows a // well-functioning system. // // ____________ // \ // \ // \__________ // std::shared_ptr> OkDelayFunction( new PartialFunction( {{{0, AppConfig.BrokenCounter}, std::make_shared>( 0, 1.f, AppConfig.BrokenCounter, 0.f)}, {{AppConfig.BrokenCounter, std::numeric_limits::max()}, std::make_shared>(0.f, 0.f)}}, 1.f)); // // Create a AppAgent with SystemStateDetector functionality. // LOG_INFO("Create SystemStateDetector agent."); AgentHandle SystemStateDetectorAgent = createSystemStateDetectorAgent( AppCCAM, "SystemStateDetector", AppConfig.SignalConfigurations.size(), BrokenDelayFunction, OkDelayFunction); // // Set policy of SystemStateDetectorAgent that it wait for all // SignalStateDetectorAgents // std::set pos; for (size_t i = 0; i < AppConfig.SignalConfigurations.size(); ++i) pos.insert(pos.end(), i); AppCCAM->setExecutionPolicy(SystemStateDetectorAgent, AppExecutionPolicy::awaitAll(pos)); // // Create Vectors for all sensors, all signal related fuzzy functions, all // signal state detectors, all signal state agents, and all input data files. // LOG_INFO("Creating sensors, SignalStateDetector functionalities and their " "Abstractions."); std::vector Sensors; std::vector>> SampleMatchesFunctions; std::vector>> SampleMismatchesFunctions; std::vector>> SignalIsStableFunctions; std::vector>> SignalIsDriftingFunctions; std::vector>> NumOfSamplesMatchFunctions; std::vector>> NumOfSamplesMismatchFunctions; std::vector>> SampleValidFunctions; std::vector>> SampleInvalidFunctions; std::vector>> NumOfSamplesValidFunctions; std::vector>> NumOfSamplesInvalidFunctions; std::vector>> SignalStateDetectors; std::vector SignalStateDetectorAgents; std::vector DataFiles; // // Go through all signal state configurations (number of signals), and create // functionalities for SignalStateDetector. // for (auto SignalConfiguration : AppConfig.SignalConfigurations) { // // Create application sensors. // Sensors.emplace_back( AppCCAM->createSensor(SignalConfiguration.Name + "_Sensor")); // // Create following function(s) which shall give information whether one // sample matches another one (based on the relative distance between them). // // ____________ // / \ // / \ // __________/ \__________ // // SampleMatchesFunctions.emplace_back(new PartialFunction( { {{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound}, std::make_shared>( -SignalConfiguration.OuterBound, 0.f, -SignalConfiguration.InnerBound, 1.f)}, {{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound}, std::make_shared>(1.f, 0.f)}, {{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound}, std::make_shared>( SignalConfiguration.InnerBound, 1.f, SignalConfiguration.OuterBound, 0.f)}, }, 0)); // // Create following function(s) which shall give information whether one // sample mismatches another one (based on the relative distance between // them). // // ____________ ____________ // \ / // \ / // \__________/ // // SampleMismatchesFunctions.emplace_back(new PartialFunction( { {{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound}, std::make_shared>( -SignalConfiguration.OuterBound, 1.f, -SignalConfiguration.InnerBound, 0.f)}, {{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound}, std::make_shared>(0.f, 0.f)}, {{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound}, std::make_shared>( SignalConfiguration.InnerBound, 0.f, SignalConfiguration.OuterBound, 1.f)}, }, 1)); // // Create following function(s) which shall give information whether a // signal is stable. // // ____________ // / \ // / \ // __________/ \__________ // // SignalIsStableFunctions.emplace_back(new PartialFunction( { {{-SignalConfiguration.OuterBoundDrift, -SignalConfiguration.InnerBoundDrift}, std::make_shared>( -SignalConfiguration.OuterBoundDrift, 0.f, -SignalConfiguration.InnerBoundDrift, 1.f)}, {{-SignalConfiguration.InnerBoundDrift, SignalConfiguration.InnerBoundDrift}, std::make_shared>(1.f, 0.f)}, {{SignalConfiguration.InnerBoundDrift, SignalConfiguration.OuterBoundDrift}, std::make_shared>( SignalConfiguration.InnerBoundDrift, 1.f, SignalConfiguration.OuterBoundDrift, 0.f)}, }, 0)); // // Create following function(s) which shall give information whether a // signal is drifting. // // ____________ ____________ // \ / // \ / // \__________/ // // SignalIsDriftingFunctions.emplace_back(new PartialFunction( { {{-SignalConfiguration.OuterBoundDrift, -SignalConfiguration.InnerBoundDrift}, std::make_shared>( -SignalConfiguration.OuterBoundDrift, 1.f, -SignalConfiguration.InnerBoundDrift, 0.f)}, {{-SignalConfiguration.InnerBoundDrift, SignalConfiguration.InnerBoundDrift}, std::make_shared>(0.f, 0.f)}, {{SignalConfiguration.InnerBoundDrift, SignalConfiguration.OuterBoundDrift}, std::make_shared>( SignalConfiguration.InnerBoundDrift, 0.f, SignalConfiguration.OuterBoundDrift, 1.f)}, }, 1)); // // Create following function(s) which shall give information how many // history samples match another sample. // // ____________ // / // / // __________/ // NumOfSamplesMatchFunctions.emplace_back(new StepFunction( 1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp)); // // Create following function(s) which shall give information how many // history samples mismatch another sample. // // ____________ // \ // \ // \__________ // NumOfSamplesMismatchFunctions.emplace_back(new StepFunction( 1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown)); // // Create following function(s) which shall give information how good all // samples in a state match each other. // // ____________ // / \ // / \ // __________/ \__________ // // SampleValidFunctions.emplace_back(new PartialFunction( { {{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound}, std::make_shared>( -SignalConfiguration.OuterBound, 0.f, -SignalConfiguration.InnerBound, 1.f)}, {{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound}, std::make_shared>(1.f, 0.f)}, {{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound}, std::make_shared>( SignalConfiguration.InnerBound, 1.f, SignalConfiguration.OuterBound, 0.f)}, }, 0)); // // Create following function(s) which shall give information how good all // samples in a state mismatch each other. // // ____________ ____________ // \ / // \ / // \__________/ // // SampleInvalidFunctions.emplace_back(new PartialFunction( { {{-SignalConfiguration.OuterBound, -SignalConfiguration.InnerBound}, std::make_shared>( -SignalConfiguration.OuterBound, 1.f, -SignalConfiguration.InnerBound, 0.f)}, {{-SignalConfiguration.InnerBound, SignalConfiguration.InnerBound}, std::make_shared>(0.f, 0.f)}, {{SignalConfiguration.InnerBound, SignalConfiguration.OuterBound}, std::make_shared>( SignalConfiguration.InnerBound, 0.f, SignalConfiguration.OuterBound, 1.f)}, }, 1)); // // Create following function(s) which shall give information how many // history samples match each other. // // ____________ // / // / // __________/ // NumOfSamplesValidFunctions.emplace_back(new StepFunction( 1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepUp)); // // Create following function(s) which shall give information how many // history samples mismatch each other. // // ____________ // \ // \ // \__________ // NumOfSamplesInvalidFunctions.emplace_back(new StepFunction( 1.0f / SignalConfiguration.SampleHistorySize, StepDirection::StepDown)); // // Create SignalStateDetector functionality // SignalStateDetectors.emplace_back( new SignalStateDetector( SignalConfiguration.Output ? SignalProperties::OUTPUT : SignalProperties::INPUT, std::numeric_limits::max(), SampleMatchesFunctions.back(), SampleMismatchesFunctions.back(), NumOfSamplesMatchFunctions.back(), NumOfSamplesMismatchFunctions.back(), SampleValidFunctions.back(), SampleInvalidFunctions.back(), NumOfSamplesValidFunctions.back(), NumOfSamplesInvalidFunctions.back(), SignalIsDriftingFunctions.back(), SignalIsStableFunctions.back(), SignalConfiguration.SampleHistorySize, SignalConfiguration.DABSize, SignalConfiguration.DABHistorySize)); // // Create low-level application agents // SignalStateDetectorAgents.push_back(createSignalStateDetectorAgent( AppCCAM, SignalConfiguration.Name, SignalStateDetectors.back())); AppCCAM->setExecutionPolicy( SignalStateDetectorAgents.back(), AppExecutionPolicy::decimation(AppConfig.DownsamplingRate)); // // Connect sensors to low-level agents. // LOG_INFO("Connect sensors to their corresponding low-level agents."); AppCCAM->connectSensor(SignalStateDetectorAgents.back(), 0, Sensors.back(), SignalConfiguration.Name + "_Sensor ->" + SignalConfiguration.Name + "_SignalStateDetector_Agent-Channel"); AppCCAM->connectAgents( SystemStateDetectorAgent, SignalStateDetectors.size() - 1, SignalStateDetectorAgents.back(), SignalConfiguration.Name + "_SignalStateDetector_Agent->SystemStateDetector_Agent_Channel"); } // // For simulation output, create a logger agent writing the output of the // high-level agent into a CSV file. // LOG_INFO("Create a logger agent."); // Create CSV writer. std::ofstream OutputCSV(AppConfig.OutputFilePath); for (auto SignalConfiguration : AppConfig.SignalConfigurations) { OutputCSV << SignalConfiguration.Name + ","; } +//OutputCSV << "StateFirstMean,"; OutputCSV << "StateID,"; OutputCSV << "Confidence State Valid,"; OutputCSV << "Confidence State Invalid,"; OutputCSV << "Confidence Inputs Matching,"; OutputCSV << "Confidence Outputs Matching,"; OutputCSV << "Confidence Inputs Mismatching,"; OutputCSV << "Confidence Outputs Mismatching,"; OutputCSV << "State Condition,"; OutputCSV << "Confidence System Functioning,"; OutputCSV << "Confidence System Malfunctioning,"; OutputCSV << "Overall Confidence,"; OutputCSV << "\n"; // The agent writes each new input value into a CSV file and produces // nothing. using Input = std::pair; using Result = Optional>; using Handler = std::function; std::string Name = "Logger Agent"; AgentHandle LoggerAgent = AppCCAM->createAgent( "Logger Agent", Handler([&OutputCSV](Input I) -> Result { const SystemStateTuple &T = I.first; OutputCSV << std::get<0>( static_cast &>(T)) << std::endl; return Result(); })); // // Connect the high-level agent to the logger agent. // LOG_INFO("Connect the high-level agent to the logger agent."); AppCCAM->connectAgents(LoggerAgent, 0, SystemStateDetectorAgent, "SystemStateDetector Channel"); // // Only log if the SystemStateDetector actually ran // AppCCAM->setExecutionPolicy(LoggerAgent, AppExecutionPolicy::awaitAll({0})); // // Do simulation. // LOG_INFO("Setting up and performing simulation."); // // Initialize application for simulation. // AppCCAM->initializeSimulation(); // // Open CSV files and register them for their corresponding sensors. // // Make sure DataFiles will not change capacity while adding elements to it. // Changing capacity moves elements away, which invalidates references // captured by CSVIterator. DataFiles.reserve(AppConfig.SignalConfigurations.size()); uint32_t i = 0; for (auto SignalConfiguration : AppConfig.SignalConfigurations) { DataFiles.emplace_back(SignalConfiguration.InputPath); if (!DataFiles.at(i)) { LOG_ERROR_STREAM << "Cannot open Input File \"" << SignalConfiguration.InputPath << "\" for Signal \"" << SignalConfiguration.Name << "\"" << std::endl; return 3; } AppCCAM->registerSensorValues(Sensors.at(i), csv::CSVIterator(DataFiles.at(i)), csv::CSVIterator()); i++; } // // Start simulation. // AppCCAM->simulate(AppConfig.NumberOfSimulationCycles); return 0; } diff --git a/include/rosa/agent/SignalState.hpp b/include/rosa/agent/SignalState.hpp index bb425b9..73967bd 100644 --- a/include/rosa/agent/SignalState.hpp +++ b/include/rosa/agent/SignalState.hpp @@ -1,511 +1,534 @@ //===-- rosa/agent/SignalState.hpp ------------------------------*- C++ -*-===// // // The RoSA Framework // //===----------------------------------------------------------------------===// /// /// \file rosa/agent/SignalState.hpp /// /// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at) /// /// \date 2019 /// /// \brief Definition of *signal state* *functionality*. /// //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_SIGNALSTATE_HPP #define ROSA_AGENT_SIGNALSTATE_HPP #include "rosa/agent/FunctionAbstractions.hpp" #include "rosa/agent/Functionality.h" #include "rosa/agent/History.hpp" #include "rosa/agent/State.hpp" #include "rosa/support/math.hpp" namespace rosa { namespace agent { /// Signal properties defining the properties of the signal which is monitored /// by \c rosa::agent::SignalStateDetector and is saved in \c /// rosa::agent::SignalStateInformation. enum SignalProperties : uint8_t { INPUT = 0, ///< The signal is an input signal OUTPUT = 1 ///< The signal is an output signal }; /// TODO: write description template struct SignalStateInformation : StateInformation { // Make sure the actual type arguments are matching our expectations. STATIC_ASSERT((std::is_arithmetic::value), "confidence type is not to arithmetic"); /// ConfidenceOfMatchingState is the confidence how good the new sample /// matches the state. CONFDATATYPE ConfidenceOfMatchingState; /// ConfidenceOfMatchingState is the confidence how bad the new sample /// matches the state. CONFDATATYPE ConfidenceOfMismatchingState; /// The SignalProperty saves whether the monitored signal is an input our /// output signal. SignalProperties SignalProperty; /// The SignalStateIsValid saves the number of samples which have been /// inserted into the state after entering it. uint32_t NumberOfInsertedSamplesAfterEntrance; public: SignalStateInformation(unsigned int SignalStateID, SignalProperties _SignalProperty) { this->StateID = SignalStateID; this->SignalProperty = _SignalProperty; this->StateCondition = StateConditions::UNKNOWN; this->NumberOfInsertedSamplesAfterEntrance = 0; + this->FirstCnt = 0; + this->StateFirstMean = 0.0; this->StateIsValid = false; this->StateJustGotValid = false; this->StateIsValidAfterReentrance = false; this->ConfidenceStateIsValid = 0; this->ConfidenceStateIsInvalid = 0; this->ConfidenceStateIsStable = 0; this->ConfidenceStateIsDrifting = 0; } SignalStateInformation() = default; }; /// \tparam INDATATYPE type of input data, \tparam CONFDATATYPE type of /// data in that the confidence values are given, \tparam PROCDATATYPE type of /// the relative distance and the type of data in which DABs are saved. template class SignalState : public Functionality { // Make sure the actual type arguments are matching our expectations. STATIC_ASSERT((std::is_arithmetic::value), "input data type not arithmetic"); STATIC_ASSERT((std::is_arithmetic::value), "confidence data type is not to arithmetic"); STATIC_ASSERT( (std::is_arithmetic::value), "process data type (DAB and Relative Distance) is not to arithmetic"); public: // For the convinience to write a shorter data type name using PartFuncReference = PartialFunction &; using StepFuncReference = StepFunction &; private: /// SignalStateInfo is a struct of SignalStateInformation that contains /// information about the current signal state. SignalStateInformation SignalStateInfo; /// The FuzzyFunctionSampleMatches is the fuzzy function that gives the /// confidence how good the new sample matches another sample in the sample /// history. PartFuncReference FuzzyFunctionSampleMatches; /// The FuzzyFunctionSampleMismatches is the fuzzy function that gives the /// confidence how bad the new sample matches another sample in the sample /// history. PartFuncReference FuzzyFunctionSampleMismatches; /// The FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the /// confidence how many samples from the sampe history match the new sample. StepFuncReference FuzzyFunctionNumOfSamplesMatches; /// The FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives /// the confidence how many samples from the sampe history mismatch the new /// sample. StepFuncReference FuzzyFunctionNumOfSamplesMismatches; /// The FuzzyFunctionSampleValid is the fuzzy function that gives the /// confidence how good one matches another sample in the sample /// history. This is done to evaluate whether a state is valid. PartFuncReference FuzzyFunctionSampleValid; /// The FuzzyFunctionSampleInvalid is the fuzzy function that gives the /// confidence how bad one sample matches another sample in the sample /// history. This is done to evaluate whether a state is invalid. PartFuncReference FuzzyFunctionSampleInvalid; /// The FuzzyFunctionNumOfSamplesValid is the fuzzy function that gives the /// confidence how many samples from the sample history match another sample. /// This is done to evaluate whether a state is valid. StepFuncReference FuzzyFunctionNumOfSamplesValid; /// The FuzzyFunctionNumOfSamplesInvalid is the fuzzy function that gives /// the confidence how many samples from the sample history mismatch another /// sample. This is done to evaluate whether a state is invalid. StepFuncReference FuzzyFunctionNumOfSamplesInvalid; /// The FuzzyFunctionSignalIsDrifting is the fuzzy function that gives the /// confidence how likely it is that the signal (resp. the state of a signal) /// is drifting. PartFuncReference FuzzyFunctionSignalIsDrifting; /// The FuzzyFunctionSignalIsStable is the fuzzy function that gives the /// confidence how likely it is that the signal (resp. the state of a signal) /// is stable (not drifting). PartFuncReference FuzzyFunctionSignalIsStable; /// SampleHistory is a history in that the last sample values are stored. DynamicLengthHistory SampleHistory; /// DAB is a (usually) small history of the last sample values of which a /// average is calculated if the DAB is full. DynamicLengthHistory DAB; /// DABHistory is a history in that the last DABs (to be exact, the averages /// of the last DABs) are stored. DynamicLengthHistory DABHistory; /// LowestConfidenceMatchingHistory is a history in that the lowest confidence /// for the current sample matches all history samples are saved. DynamicLengthHistory LowestConfidenceMatchingHistory; /// HighestConfidenceMatchingHistory is a history in that the highest /// confidence for the current sample matches all history samples are saved. DynamicLengthHistory HighestConfidenceMismatchingHistory; /// TempConfidenceMatching is the confidence how good a sample matches the /// state. However, the value of this variable is only needed temporarly. CONFDATATYPE TempConfidenceMatching = 0; /// TempConfidenceMatching is the confidence how bad a sample matches the /// state. However, the value of this variable is only needed temporarly. CONFDATATYPE TempConfidenceMismatching = 0; public: /// Creates an instance by setting all parameters /// \param SignalStateID The Id of the SignalStateinfo \c /// SignalStateInformation. /// /// \param FuzzyFunctionSampleMatches The FuzzyFunctionSampleMatches is the /// fuzzy function that gives the confidence how good the new sample matches /// another sample in the sample history. /// /// \param FuzzyFunctionSampleMismatches The FuzzyFunctionSampleMismatches is /// the fuzzy function that gives the confidence how bad the new sample /// matches another sample in the sample history. /// /// \param FuzzyFunctionNumOfSamplesMatches The /// FuzzyFunctionNumOfSamplesMatches is the fuzzy function that gives the /// confidence how many samples from the sampe history match the new sample. /// /// \param FuzzyFunctionNumOfSamplesMismatches The /// FuzzyFunctionNumOfSamplesMismatches is the fuzzy function that gives the /// confidence how many samples from the sampe history mismatch the new /// sample. /// /// \param FuzzyFunctionSignalIsDrifting The FuzzyFunctionSignalIsDrifting is /// the fuzzy function that gives the confidence how likely it is that the /// signal (resp. the state of a signal) is drifting. /// /// \param FuzzyFunctionSignalIsStable The FuzzyFunctionSignalIsStable is the /// fuzzy function that gives the confidence how likely it is that the signal /// (resp. the state of a signal) is stable (not drifting). /// /// \param SampleHistorySize Size of the Sample History \c /// DynamicLengthHistory . SampleHistory is a history in that the last sample /// values are stored. /// /// \param DABSize Size of DAB \c DynamicLengthHistory . DAB is a (usually) /// small history of the last sample values of which a average is calculated /// if the DAB is full. /// /// \param DABHistorySize Size of the DABHistory \c DynamicLengthHistory . /// DABHistory is a history in that the last DABs (to be exact, the averages /// of the last DABs) are stored. /// SignalState(uint32_t SignalStateID, SignalProperties SignalProperty, uint32_t SampleHistorySize, uint32_t DABSize, uint32_t DABHistorySize, PartFuncReference FuzzyFunctionSampleMatches, PartFuncReference FuzzyFunctionSampleMismatches, StepFuncReference FuzzyFunctionNumOfSamplesMatches, StepFuncReference FuzzyFunctionNumOfSamplesMismatches, PartFuncReference FuzzyFunctionSampleValid, PartFuncReference FuzzyFunctionSampleInvalid, StepFuncReference FuzzyFunctionNumOfSamplesValid, StepFuncReference FuzzyFunctionNumOfSamplesInvalid, PartFuncReference FuzzyFunctionSignalIsDrifting, PartFuncReference FuzzyFunctionSignalIsStable) noexcept : SignalStateInfo{SignalStateID, SignalProperty}, FuzzyFunctionSampleMatches(FuzzyFunctionSampleMatches), FuzzyFunctionSampleMismatches(FuzzyFunctionSampleMismatches), FuzzyFunctionNumOfSamplesMatches(FuzzyFunctionNumOfSamplesMatches), FuzzyFunctionNumOfSamplesMismatches( FuzzyFunctionNumOfSamplesMismatches), FuzzyFunctionSampleValid(FuzzyFunctionSampleValid), FuzzyFunctionSampleInvalid(FuzzyFunctionSampleInvalid), FuzzyFunctionNumOfSamplesValid(FuzzyFunctionNumOfSamplesValid), FuzzyFunctionNumOfSamplesInvalid(FuzzyFunctionNumOfSamplesInvalid), FuzzyFunctionSignalIsDrifting(FuzzyFunctionSignalIsDrifting), FuzzyFunctionSignalIsStable(FuzzyFunctionSignalIsStable), SampleHistory(SampleHistorySize), DAB(DABSize), DABHistory(DABHistorySize), LowestConfidenceMatchingHistory(SampleHistorySize), HighestConfidenceMismatchingHistory(SampleHistorySize) {} /// Destroys \p this object. ~SignalState(void) = default; void leaveSignalState(void) noexcept { DAB.clear(); SignalStateInfo.NumberOfInsertedSamplesAfterEntrance = 0; SignalStateInfo.StateIsValidAfterReentrance = false; } SignalStateInformation insertSample(INDATATYPE Sample) noexcept { SignalStateInfo.NumberOfInsertedSamplesAfterEntrance++; validateSignalState(Sample); SampleHistory.addEntry(Sample); + if (SignalStateInfo.FirstCnt<10){ + SignalStateInfo.FirstCnt += 1; + SignalStateInfo.StateFirstMean += Sample; + } + else if(SignalStateInfo.FirstCnt==10) + { + SignalStateInfo.StateFirstMean = SignalStateInfo.StateFirstMean/10; + SignalStateInfo.FirstCnt += 1; + + } + //std::cout << SignalStateInfo.StateID <<": Cnt=" << SignalStateInfo.FirstCnt << ", Mean=" << SignalStateInfo.StateFirstMean << "\n"; + DAB.addEntry(Sample); if (DAB.full()) { PROCDATATYPE AvgOfDAB = DAB.template average(); DABHistory.addEntry(AvgOfDAB); DAB.clear(); } FuzzyFunctionNumOfSamplesMatches.setRightLimit( static_cast(SampleHistory.numberOfEntries())); FuzzyFunctionNumOfSamplesMismatches.setRightLimit( static_cast(SampleHistory.numberOfEntries())); checkSignalStability(); SignalStateInfo.ConfidenceOfMatchingState = TempConfidenceMatching; SignalStateInfo.ConfidenceOfMismatchingState = TempConfidenceMismatching; return SignalStateInfo; } /// Gives the confidence how likely the new sample matches the signal state. /// /// \param Sample is the actual sample of the observed signal. /// /// \return the confidence of the new sample is matching the signal state. CONFDATATYPE confidenceSampleMatchesSignalState(INDATATYPE Sample) noexcept { CONFDATATYPE ConfidenceOfBestCase = 0; DynamicLengthHistory RelativeDistanceHistory(SampleHistory.maxLength()); // Calculate distances to all history samples. for (auto &HistorySample : SampleHistory) { PROCDATATYPE RelativeDistance = relativeDistance(Sample, HistorySample); RelativeDistanceHistory.addEntry(RelativeDistance); } // Sort all calculated distances so that the lowest distance (will get the // highest confidence) is at the beginning. RelativeDistanceHistory.sortAscending(); CONFDATATYPE ConfidenceOfWorstFittingSample = 1; // Case 1 means that one (the best fitting) sample of the history is // compared with the new sample. Case 2 means the two best history samples // are compared with the new sample. And so on. // TODO (future): to accelerate . don't start with 1 start with some higher // number because a low number (i guess lower than 5) will definetely lead // to a low confidence. except the history is not full. // Case 1 means that one (the best fitting) sample of the history is // compared with the new sample. Case 2 means the two best history samples // are compared with the new sample. And so on. for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries(); Case++) { CONFDATATYPE ConfidenceFromRelativeDistance; if (std::isinf(RelativeDistanceHistory[Case])) { // TODO (future): if fuzzy is defined in a way that infinity is not 0 it // would be a problem. ConfidenceFromRelativeDistance = 0; } else { ConfidenceFromRelativeDistance = FuzzyFunctionSampleMatches(RelativeDistanceHistory[Case]); } ConfidenceOfWorstFittingSample = fuzzyAND(ConfidenceOfWorstFittingSample, ConfidenceFromRelativeDistance); ConfidenceOfBestCase = fuzzyOR(ConfidenceOfBestCase, fuzzyAND(ConfidenceOfWorstFittingSample, FuzzyFunctionNumOfSamplesMatches( static_cast(Case) + 1))); } + if(SignalStateInfo.FirstCnt==11){ + if(std::abs(Sample-SignalStateInfo.StateFirstMean)>std::abs(0.1*SignalStateInfo.StateFirstMean)){ + ConfidenceOfBestCase=0; + //std::cout << "Value " << Sample << "is too far away from " << SignalStateInfo.StateFirstMean << " so this state does not match mean \n"; + } + } TempConfidenceMatching = ConfidenceOfBestCase; return ConfidenceOfBestCase; } /// Gives the confidence how likely the new sample mismatches the signal /// state. /// /// \param Sample is the actual sample of the observed signal. /// /// \return the confidence of the new sample is mismatching the signal state. CONFDATATYPE confidenceSampleMismatchesSignalState(INDATATYPE Sample) noexcept { float ConfidenceOfWorstCase = 1; DynamicLengthHistory RelativeDistanceHistory(SampleHistory.maxLength()); // Calculate distances to all history samples. for (auto &HistorySample : SampleHistory) { RelativeDistanceHistory.addEntry( relativeDistance(Sample, HistorySample)); } // Sort all calculated distances so that the highest distance (will get the // lowest confidence) is at the beginning. RelativeDistanceHistory.sortDescending(); CONFDATATYPE ConfidenceOfBestFittingSample = 0; // TODO (future): to accelerate -> don't go until end. Confidences will only // get higher. See comment in "CONFDATATYPE // confidenceSampleMatchesSignalState(INDATATYPE Sample)". // Case 1 means that one (the worst fitting) sample of the history is // compared with the new sample. Case 2 means the two worst history samples // are compared with the new sample. And so on. for (uint32_t Case = 0; Case < RelativeDistanceHistory.numberOfEntries(); Case++) { CONFDATATYPE ConfidenceFromRelativeDistance; if (std::isinf(RelativeDistanceHistory[Case])) { ConfidenceFromRelativeDistance = 1; } else { ConfidenceFromRelativeDistance = FuzzyFunctionSampleMismatches(RelativeDistanceHistory[Case]); } ConfidenceOfBestFittingSample = fuzzyOR(ConfidenceOfBestFittingSample, ConfidenceFromRelativeDistance); ConfidenceOfWorstCase = fuzzyAND(ConfidenceOfWorstCase, fuzzyOR(ConfidenceOfBestFittingSample, FuzzyFunctionNumOfSamplesMismatches( static_cast(Case) + 1))); } + TempConfidenceMismatching = ConfidenceOfWorstCase; + return ConfidenceOfWorstCase; } /// Gives information about the current signal state. /// /// \return a struct SignalStateInformation that contains information about /// the current signal state. SignalStateInformation signalStateInformation(void) noexcept { return SignalStateInfo; } private: void validateSignalState(INDATATYPE Sample) { // TODO (future): WorstConfidenceDistance and BestConfidenceDistance could // be set already in "CONFDATATYPE // confidenceSampleMatchesSignalState(INDATATYPE Sample)" and "CONFDATATYPE // confidenceSampleMismatchesSignalState(INDATATYPE Sample)" when the new // sample is compared to all history samples. This would save a lot time // because the comparisons are done only once. However, it has to be asured // that the these two functions are called before the insertation, and the // FuzzyFunctions for validation and matching have to be the same! CONFDATATYPE LowestConfidenceMatching = 1; CONFDATATYPE HighestConfidenceMismatching = 0; for (auto &HistorySample : SampleHistory) { // TODO (future): think about using different fuzzy functions for // validation and matching. LowestConfidenceMatching = fuzzyAND( LowestConfidenceMatching, FuzzyFunctionSampleMatches(relativeDistance( Sample, HistorySample))); HighestConfidenceMismatching = fuzzyOR(HighestConfidenceMismatching, FuzzyFunctionSampleMismatches( relativeDistance( Sample, HistorySample))); } LowestConfidenceMatchingHistory.addEntry(LowestConfidenceMatching); HighestConfidenceMismatchingHistory.addEntry(HighestConfidenceMismatching); LowestConfidenceMatching = LowestConfidenceMatchingHistory.lowestEntry(); HighestConfidenceMismatching = HighestConfidenceMismatchingHistory.highestEntry(); SignalStateInfo.ConfidenceStateIsValid = fuzzyAND(LowestConfidenceMatching, FuzzyFunctionNumOfSamplesValid(static_cast( SignalStateInfo.NumberOfInsertedSamplesAfterEntrance))); SignalStateInfo.ConfidenceStateIsInvalid = fuzzyOR(HighestConfidenceMismatching, FuzzyFunctionNumOfSamplesInvalid(static_cast( SignalStateInfo.NumberOfInsertedSamplesAfterEntrance))); if (SignalStateInfo.StateIsValid) SignalStateInfo.StateJustGotValid = false; if (SignalStateInfo.ConfidenceStateIsValid > SignalStateInfo.ConfidenceStateIsInvalid) { if (!SignalStateInfo.StateIsValid) SignalStateInfo.StateJustGotValid = true; SignalStateInfo.StateIsValid = true; SignalStateInfo.StateIsValidAfterReentrance = true; } } void checkSignalStability(void) { if (DABHistory.numberOfEntries() >= 2) { SignalStateInfo.ConfidenceStateIsStable = FuzzyFunctionSignalIsStable( relativeDistance( DABHistory[DABHistory.numberOfEntries() - 1], DABHistory[0])); SignalStateInfo.ConfidenceStateIsDrifting = FuzzyFunctionSignalIsDrifting( relativeDistance( DABHistory[DABHistory.numberOfEntries() - 1], DABHistory[0])); } else { // Initializing the following variables because (at this moment) we do not // know if the signal is stable or drifting. SignalStateInfo.ConfidenceStateIsStable = 0; SignalStateInfo.ConfidenceStateIsDrifting = 0; } if (SignalStateInfo.ConfidenceStateIsStable > SignalStateInfo.ConfidenceStateIsDrifting) { SignalStateInfo.StateCondition = StateConditions::STABLE; } else if (SignalStateInfo.ConfidenceStateIsStable < SignalStateInfo.ConfidenceStateIsDrifting) { SignalStateInfo.StateCondition = StateConditions::DRIFTING; + std::cout << "DRIFTING"; } else { SignalStateInfo.StateCondition = StateConditions::UNKNOWN; } } }; } // End namespace agent } // End namespace rosa #endif // ROSA_AGENT_SIGNALSTATE_HPP diff --git a/include/rosa/agent/State.hpp b/include/rosa/agent/State.hpp index 0a1abd4..e2d4ff1 100644 --- a/include/rosa/agent/State.hpp +++ b/include/rosa/agent/State.hpp @@ -1,93 +1,98 @@ //===-- rosa/agent/State.hpp ------------------------------------*- C++ -*-===// // // The RoSA Framework // // Distributed under the terms and conditions of the Boost Software License 1.0. // See accompanying file LICENSE. // // If you did not receive a copy of the license file, see // http://www.boost.org/LICENSE_1_0.txt. // //===----------------------------------------------------------------------===// /// /// \file rosa/agent/State.hpp /// /// \author Maximilian Götzinger (maximilian.goetzinger@tuwien.ac.at) /// /// \date 2019 /// /// \brief Definition of *state* *functionality*. /// //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_STATE_HPP #define ROSA_AGENT_STATE_HPP #include "rosa/agent/Functionality.h" //#include "rosa/agent/FunctionAbstractions.hpp" //#include "rosa/agent/History.hpp" #include "rosa/support/debug.hpp" #include //#include namespace rosa { namespace agent { /// State conditions defining how the condition of a \c rosa::agent::State is /// saved in \c rosa::agent::StateInformation. enum StateConditions : uint8_t { UNKNOWN = 0, ///< The state is unknown STABLE = 1, ///< The state is stable DRIFTING = 2, ///< The state is drifting MALFUNCTIONING = 3 ///< Malfunction }; template struct StateInformation { // Make sure the actual type arguments are matching our expectations. STATIC_ASSERT((std::is_arithmetic::value), "confidence type is not to arithmetic"); /// The StateID stores the ID of the state. unsigned int StateID; + /// XXX + double StateFirstMean; + /// XXX + unsigned int FirstCnt; + /// The StateCondition shows the condition of a state (stable, drifting, or /// unknown) StateConditions StateCondition; /// The StateIsValid shows whether a state is valid or invalid. In this /// context, valid means that enough samples which are in close proximitry /// have been inserted into the state. bool StateIsValid; /// The StateJustGotValid shows whether a state got valid (toggled from /// invalid to valid) during the current inserted sample. bool StateJustGotValid; /// The StateIsValidAfterReentrance shows whether a state is valid after the /// variable changed back to it again. bool StateIsValidAfterReentrance; /// TODO: describe CONFDATATYPE ConfidenceStateIsValid; CONFDATATYPE ConfidenceStateIsInvalid; CONFDATATYPE ConfidenceStateIsStable; CONFDATATYPE ConfidenceStateIsDrifting; }; template class State : public Functionality { // Make sure the actual type arguments are matching our expectations. STATIC_ASSERT((std::is_arithmetic::value), "input data type not arithmetic"); STATIC_ASSERT((std::is_arithmetic::value), "confidence abstraction type is not to arithmetic"); STATIC_ASSERT((std::is_arithmetic::value), "process type is not to arithmetic"); protected: }; } // End namespace agent } // End namespace rosa #endif // ROSA_AGENT_SIGNALSTATEDETECTOR_HPP