diff --git a/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp b/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp index bd5b4ea..538f0b2 100644 --- a/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp +++ b/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp @@ -1,268 +1,247 @@ //===- examples/agent-functionalities/Reliability-functionality.cpp *C++-*-===// // // The RoSA Framework // //===----------------------------------------------------------------------===// /// /// \file examples/agent-functionalities/Reliability-functionality.cpp /// /// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at ) /// /// \date 2019 /// /// \brief A simple example on defining Relianility Functionalities. /// //===----------------------------------------------------------------------===// #define Reliability_trace_level 5 #include "rosa/config/version.h" #include "rosa/support/log.h" #include "rosa/agent/CrossReliability.h" #include "rosa/agent/RangeConfidence.hpp" #include "rosa/agent/ReliabilityConfidenceCombinator.h" #include #include using namespace rosa::agent; int main(void) { typedef double SensorValueType; typedef long StateType; typedef double ReliabilityType; std::unique_ptr> Confidence(new RangeConfidence( {{0, PartialFunction( { {{0, 3}, std::make_shared>( 0, 1.0 / 3)}, {{3, 6}, std::make_shared>(1, 0)}, {{6, 9}, std::make_shared>( 3.0, -1.0 / 3)}, }, 0)}, {1, PartialFunction( { {{6, 9}, std::make_shared>( -2, 1.0 / 3)}, {{9, 12}, std::make_shared>(1, 0)}, {{12, 15}, std::make_shared>( 5, -1.0 / 3)}, }, 0)}, {2, PartialFunction( { {{12, 15}, std::make_shared>( -4, 1.0 / 3)}, {{15, 18}, std::make_shared>(1, 0)}, {{18, 21}, std::make_shared>( 7, -1.0 / 3)}, }, 0)}})); std::unique_ptr> Reliability( new LinearFunction(1, -1.0 / 3)); std::unique_ptr> ReliabilitySlope( new LinearFunction(1, -1.0 / 3)); std::unique_ptr> TimeConfidence( new LinearFunction(1, -1.0 / 3)); auto lowlevel = new ReliabilityAndConfidenceCombinator(); std::vector states; states.push_back(0); states.push_back(1); states.push_back(2); lowlevel->setConfidenceFunction(Confidence); lowlevel->setReliabilityFunction(Reliability); lowlevel->setReliabilitySlopeFunction(ReliabilitySlope); lowlevel->setTimeConfidenceFunction(TimeConfidence); lowlevel->setStates(states); lowlevel->setHistoryLength(2); lowlevel->setValueSetCounter(1); /* ----------------------------- Do Something * ---------------------------------------------------------------- */ std::cout << "Testing the lowlevel component with static feedback telling it " "that the most lickely state is 2.\n"; for (int a = 0; a < 30; a++) std::cout << "a: " << a << "\n" << (lowlevel->feedback({{0, 0}, {1, 0.3}, {2, 0.8}}), lowlevel->mostLikelySoreAndReliability(a)) << "\n"; std::cout << "---------------------------------------------------------------" "---------------------------------\n"; std::cout << "------------------------------------High level " "Test---------------------------------------------\n"; std::cout << "Configured in a way that the Master thinks that both Sensors " "should have the same State.\n While feeding both the \"opposite\" " "values one acending the other decending from the maximum.\n"; std::unique_ptr> Confidence2(new RangeConfidence( {{0, PartialFunction( { {{0, 3}, std::make_shared>( 0, 1.0 / 3)}, {{3, 6}, std::make_shared>(1, 0)}, {{6, 9}, std::make_shared>( 3.0, -1.0 / 3)}, }, 0)}, {1, PartialFunction( { {{6, 9}, std::make_shared>( -2, 1.0 / 3)}, {{9, 12}, std::make_shared>(1, 0)}, {{12, 15}, std::make_shared>( 5, -1.0 / 3)}, }, 0)}, {2, PartialFunction( { {{12, 15}, std::make_shared>( -4, 1.0 / 3)}, {{15, 18}, std::make_shared>(1, 0)}, {{18, 21}, std::make_shared>( 7, -1.0 / 3)}, }, 0)}})); std::unique_ptr> Reliability2( new LinearFunction(1, -1.0 / 9)); std::unique_ptr> ReliabilitySlope2( new LinearFunction(1, -1.0 / 9)); std::unique_ptr> TimeConfidence2( new LinearFunction(1, -1.0 / 9)); auto lowlevel2 = new ReliabilityAndConfidenceCombinator(); std::vector states2; states2.push_back(0); states2.push_back(1); states2.push_back(2); lowlevel2->setConfidenceFunction(Confidence2); lowlevel2->setReliabilityFunction(Reliability2); lowlevel2->setReliabilitySlopeFunction(ReliabilitySlope2); lowlevel2->setTimeConfidenceFunction(TimeConfidence2); lowlevel2->setStates(states2); lowlevel2->setHistoryLength(2); lowlevel2->setValueSetCounter(1); CrossCombinator *highlevel = new CrossCombinator(); - std::unique_ptr> - CrossReliability1(new CrossReliability()); - std::unique_ptr> func1(new PartialFunction( { {{0, 1}, std::make_shared>(1, 0)}, {{1, 2}, std::make_shared>(2, -1.0)}, }, 0)); - CrossReliability1->addCrossReliabilityProfile(0, 1, func1); - CrossReliability1->setCrossReliabilityMethod( - CrossReliability::AVERAGE); - CrossReliability1->setCrossReliabilityParameter(1); - - std::unique_ptr> CrossConfidence1( - new CrossConfidence()); - - std::unique_ptr> func2(new PartialFunction( - { - {{0, 1}, std::make_shared>(1, 0)}, - {{1, 2}, std::make_shared>(2, -1.0)}, - }, - 0)); - - CrossConfidence1->addCrossReliabilityProfile(0, 1, func2); - CrossConfidence1->setCrossReliabilityMethod( - CrossConfidence::AVERAGE); - CrossConfidence1->setCrossReliabilityParameter(1); - - highlevel->setCrossConfidence(CrossConfidence1); - highlevel->setCrossReliability(CrossReliability1); + highlevel->addCrossReliabilityProfile(0, 1, func1); + highlevel->setCrossReliabilityMethod( + CrossCombinator::AVERAGE); + highlevel->setCrossReliabilityParameter(1); highlevel->addStates(0, states); highlevel->addStates(1, states); for (int a = 0; a < 21; a++) { auto out1 = lowlevel->mostLikelySoreAndReliability(a), out2 = lowlevel2->mostLikelySoreAndReliability((int)21 - a); std::cout << "s1: " << out1 << "\ns2:" << out2 << "\n"; std::vector> tmp2; tmp2.push_back({0, out1.score, out1.Reliability}); tmp2.push_back({1, out2.score, out2.Reliability}); auto out_o = highlevel->operator()(tmp2); std::cout << "it: " << a << "\t rel: " << out_o.CrossReliability << "\n"; std::cout << "\t subs:\n"; for (auto q : out_o.CrossConfidence) { std::cout << "\t\t id:" << q.first << "\n"; /* for(auto z: q.second) { std::cout << "\t\t\t score: " << z.score << "\tRel: " << z.Reliability << "\n"; tmp.push_back({z.score,z.Reliability}); } */ for (auto z : q.second) { std::cout << "\t\t\t score: " << z.score << "\tRel: " << z.Reliability << "\n"; } if (q.first == 0) lowlevel->feedback(q.second); else lowlevel2->feedback(q.second); } } /* ----------------------------- Cleanup * --------------------------------------------------------------------- */ delete highlevel; delete lowlevel; delete lowlevel2; } \ No newline at end of file diff --git a/include/rosa/agent/CrossReliability.h b/include/rosa/agent/CrossReliability.h index 2b2f8a6..3142089 100644 --- a/include/rosa/agent/CrossReliability.h +++ b/include/rosa/agent/CrossReliability.h @@ -1,538 +1,353 @@ //===-- rosa/delux/CrossReliability.h ---------------------------*- C++ -*-===// // // The RoSA Framework // //===----------------------------------------------------------------------===// /// /// \file rosa/delux/CrossReliability.h /// /// \author Daniel Schnoell /// /// \date 2019 /// /// \brief /// /// \todo there is 1 exception that needs to be handled correctly. /// \note the default search function is extremely slow maby this could be done /// via template for storage class and the functions/methods to efficiently find /// the correct LinearFunction //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_CROSSRELIABILITY_H #define ROSA_AGENT_CROSSRELIABILITY_H #include "rosa/agent/Abstraction.hpp" #include "rosa/agent/Functionality.h" +#include "rosa/agent/ReliabilityConfidenceCombinator.h" #include "rosa/core/forward_declarations.h" // needed for id_t #include "rosa/support/log.h" // needed for error "handling" -#include "rosa/agent/ReliabilityConfidenceCombinator.h" // nedded headers #include #include //assert #include // for static methods #include #include namespace rosa { namespace agent { - - - -/// Calculates the Cross Reliability -/// \brief it uses the state represented by a numerical value and calculates the -/// Reliability of a given agent( represented by there id ) in connection to all -/// other given agents -/// -/// \note all combination of agents and there coresponding Cross Reliability -/// function have to be specified -template -class CrossReliability : public Abstraction { - - static_assert( - std::is_arithmetic::value, - "CrossReliability: has to be arithmetic type\n"); // sanitny check - static_assert( - std::is_arithmetic::value, - "CrossReliability: has to be arithmetic type\n"); // sanitny - // check - - using Abstraction = typename rosa::agent::Abstraction; - - struct Functionblock { - bool exists = false; - id_t A; - id_t B; - Abstraction *Funct; - }; - - /// From Maxi in his code defined as 1 can be changed by set - Type crossReliabilityParameter = 1; - - /// Stored Cross Reliability Functions - std::vector Functions; - - /// Method which is used to combine the generated values - Type (*Method)(std::vector values) = AVERAGE; - - //-------------------------------------------------------------------------------- - // helper function - /// evalues the absolute distance between two values - /// \note this is actually the absolute distance but to ceep it somewhat - /// conform with maxis code - template Type_t AbsuluteValue(Type_t A, Type_t B) { - return ((A - B) < 0) ? B - A : A - B; - } - - /// verry inefficient searchFunction - Functionblock (*searchFunction)(std::vector vect, - const id_t nameA, const id_t nameB) = - [](std::vector vect, const id_t nameA, - const id_t nameB) -> Functionblock { - for (Functionblock tmp : vect) { - if (tmp.A == nameA && tmp.B == nameB) - return tmp; - if (tmp.A == nameB && tmp.B == nameA) - return tmp; - } - return Functionblock(); - }; - - /// evaluest the corisponding LinearFunction thith the score difference - /// \param nameA these two parameters are the unique identifiers for the - /// LinerFunction \param nameB these two parameters are the unique identifiers - /// for the LinerFunction - /// - /// \note If the block nameA nameB doesn't exist it logs the error and returns - /// 0 - /// \note it doesn't matter if they are swapped - Type getCrossReliabilityFromProfile(id_t nameA, id_t nameB, - StateType scoreDifference) { - Functionblock block = searchFunction(Functions, nameA, nameB); - if (!block.exists) { - LOG_ERROR(("CrossReliability: Block:" + std::to_string(nameA) + "," + - std::to_string(nameB) + "doesn't exist returning 0")); - return 0; - } - return block.Funct->operator()(scoreDifference); - } - -public: - /// adds a Cross Reliability Profile used to get the Reliability of the state - /// difference - /// \param idA The id of the one \c Agent ( idealy the id of \c Unit to make - /// it absolutly unique ) - /// - /// \param idB The id of the other \c Agent - /// - /// \param Function A unique pointer to an \c Abstraction it would use the - /// difference in score for its input - void addCrossReliabilityProfile(id_t idA, id_t idB, - std::unique_ptr &Function) { - Abstraction *ptr = Function.release(); - Functions.push_back({true, idA, idB, ptr}); - } - - /// sets the cross reliability parameter - void setCrossReliabilityParameter(Type val) { - crossReliabilityParameter = val; - } - /// sets the used method to combine the values - /// \param Meth The Function which defines the combination method. - /// \note Inside \c CrossReliability there are static methods defined which - /// can be used. - void setCrossReliabilityMethod(Type (*Meth)(std::vector values)) { - Method = Meth; - } - - CrossReliability() : Abstraction(0) {} - - ~CrossReliability() { - for (auto tmp : Functions) - delete tmp.Funct; - Functions.clear(); - } - - /// Calculets the CrossReliability - /// \note both Main and Slaveagents are represented by there data and an - /// unique identifier - /// - /// \param MainAgent defines the value pair around which the Cross Reliability - /// is calculated - /// \param SlaveAgents defines all value pairs of the connected Agents it - /// doesn't matter if Main agent exists inside this vector - Type operator()(std::pair &&MainAgent, - std::vector> &SlaveAgents); - - /// predefined combination method - static Type CONJUNCTION(std::vector values) { - return *std::min_element(values.begin(), values.end()); - } - - /// predefined combination method - static Type AVERAGE(std::vector values) { - return std::accumulate(values.begin(), values.end(), 0.0) / values.size(); - } - - /// predefined combination method - static Type DISJUNCTION(std::vector values) { - return *std::max_element(values.begin(), values.end()); - } -}; - -template -inline Type CrossReliability:: -operator()(std::pair &&MainAgent, - std::vector> &SlaveAgents) { - - Type crossReliabiability; - std::vector values; - - for (std::pair SlaveAgent : SlaveAgents) { - - if (SlaveAgent.first == MainAgent.first) - continue; - - if (MainAgent.second == SlaveAgent.second) - crossReliabiability = 1; - else - crossReliabiability = - 1 / (crossReliabilityParameter * - AbsuluteValue(MainAgent.second, SlaveAgent.second)); - - // profile reliability - Type crossReliabilityFromProfile = getCrossReliabilityFromProfile( - MainAgent.first, SlaveAgent.first, - AbsuluteValue(MainAgent.second, SlaveAgent.second)); - values.push_back( - std::max(crossReliabiability, crossReliabilityFromProfile)); - } - return Method(values); -} - -/// Calculates the \c CrossConfidence -/// \brief It uses the a theoretical state represented by a numerical value and -/// calculates the Reliability of a given agent[ represented by there id ] in -/// connection to all other given agents this can be used to get a Confidence of -/// the current state -/// -/// \note all combination of agents and there coresponding \c CrossReliability -/// function have to be specified -template -class CrossConfidence : public Abstraction { - - static_assert(std::is_arithmetic::value, - "CrossConfidence: has to be an arithmetic type\n"); - static_assert(std::is_arithmetic::value, - "CrossConfidence: has to be an arithmetic type\n"); - - using Abstraction = typename rosa::agent::Abstraction; - - struct Functionblock { - bool exists = false; - id_t A; - id_t B; - Abstraction *Funct; - }; - - /// From Maxi in his code defined as 1 can be changed by set - Type crossReliabilityParameter = 1; - - /// Stored Cross Reliability Functions - std::vector Functions; - - /// Method which is used to combine the generated values - Type (*Method)(std::vector values) = AVERAGE; - - //-------------------------------------------------------------------------------- - // helper function - /// evalues the absolute distance between two values - /// \note this is actually the absolute distance but to ceep it somewhat - /// conform with maxis code - template Type_t AbsuluteValue(Type_t A, Type_t B) { - return ((A - B) < 0) ? B - A : A - B; - } - - /// verry inefficient searchFunction - Functionblock (*searchFunction)(std::vector vect, - const id_t nameA, const id_t nameB) = - [](std::vector vect, const id_t nameA, - const id_t nameB) -> Functionblock { - for (Functionblock tmp : vect) { - if (tmp.A == nameA && tmp.B == nameB) - return tmp; - if (tmp.A == nameB && tmp.B == nameA) - return tmp; - } - return Functionblock(); - }; - - /// evaluest the corisponding LinearFunction thith the score difference - /// \param nameA these two parameters are the unique identifiers - /// \param nameB these two parameters are the unique identifiers - /// for the LinerFunction - /// - /// \note it doesn't matter if they are swapped - Type getCrossReliabilityFromProfile(id_t nameA, id_t nameB, - StateType scoreDifference) { - Functionblock block = searchFunction(Functions, nameA, nameB); - if (!block.exists) { - LOG_ERROR(("CrossReliability: Block:" + std::to_string(nameA) + "," + - std::to_string(nameB) + "doesn't exist returning 0")); - return 0; - } - return block.Funct->operator()(scoreDifference); - } - -public: - /// adds a Cross Reliability Profile used to get the Reliability of the state - /// difference - /// \param idA The id of the one \c Agent ( idealy the id of \c Unit to make - /// it absolutly unique ) - /// - /// \param idB The id of the other \c Agent - /// - /// \param Function A unique pointer to an \c Abstraction it would use the - /// difference in score for its input - void addCrossReliabilityProfile(id_t idA, id_t idB, - std::unique_ptr &Function) { - Abstraction *ptr = Function.release(); - Functions.push_back({true, idA, idB, ptr}); - } - - /// sets the cross reliability parameter - void setCrossReliabilityParameter(Type val) { - crossReliabilityParameter = val; - } - /// sets the used method to combine the values - /// \param Meth The Function which defines the combination method. - /// \note Inside \c CrossReliability there are static methods defined which - /// can be used. - void setCrossReliabilityMethod(Type (*Meth)(std::vector values)) { - Method = Meth; - } - - CrossConfidence() : Abstraction(0) {} - - ~CrossConfidence() { - for (auto tmp : Functions) - delete tmp.Funct; - Functions.clear(); - } - - Type operator()(id_t MainAgent, StateType TheoreticalValue, - std::vector> &SlaveAgents); - - /// predefined combination method - static Type CONJUNCTION(std::vector values) { - return *std::min_element(values.begin(), values.end()); - } - - /// predefined combination method - static Type AVERAGE(std::vector values) { - return std::accumulate(values.begin(), values.end(), 0.0) / values.size(); - } - - /// predefined combination method - static Type DISJUNCTION(std::vector values) { - return *std::max_element(values.begin(), values.end()); - } -}; - -/// Calculats the CrossConfidence of the main agent compared to all other Agents -/// \param MainAgent The id of the Main agent -/// \param TheoreticalValue The throretical value it should use for calculation -/// \param SlaveAgents The numerical Representation of all other Slave Agents -template -inline Type CrossConfidence:: -operator()(id_t MainAgent, StateType TheoreticalValue, - std::vector> &SlaveAgents) { - - Type crossReliabiability; - - std::vector values; - - for (std::pair SlaveAgent : SlaveAgents) { - - if (SlaveAgent.first == MainAgent) - continue; - - if (TheoreticalValue == SlaveAgent.second) - crossReliabiability = 1; - else - crossReliabiability = - 1 / (crossReliabilityParameter * - AbsuluteValue(TheoreticalValue, SlaveAgent.second)); - - // profile reliability - Type crossReliabilityFromProfile = getCrossReliabilityFromProfile( - MainAgent, SlaveAgent.first, - AbsuluteValue(TheoreticalValue, SlaveAgent.second)); - values.push_back( - std::max(crossReliabiability, crossReliabilityFromProfile)); - } - return Method(values); -} - - /// This is the Reliability Functionality for the highlevel Agent. /// \brief It takes the scores and reliabilities of all connected lowlevel /// Agents and calculates the Reliability of them together. Also it creates the /// feedback that is needed by the \c ReliabilityForLowLevelAgents, which is a /// kind of confidence. /// /// \tparam StateType Datatype of the State ( Typically double or float) /// \tparam ReliabilityType Datatype of the Reliability ( /// Typically long or int) /// /// \note A highlevel Agent is commonly in a master slave relationship with the /// lowlevel Agents as the master. It combines the Reliability of all connected /// Slaves and uses that as its own Reliability. /// /// \note more information about how the Reliability and feedback is /// created at \c operator()() // State Type rename // merge cross rel/conf darein template class CrossCombinator { public: static_assert(std::is_arithmetic::value, "HighLevel: StateType has to be an arithmetic type\n"); static_assert(std::is_arithmetic::value, "HighLevel: ReliabilityType has to be an arithmetic type\n"); /// typedef To shorten the writing. /// \c ConfOrRel typedef ConfOrRel ConfOrRel; /// typedef of the input type for the operator() defined explicitly to /// simplify interaction /// typedef std::vector> InputType; /// The return type for the \c operator()() Method struct returnType { ReliabilityType CrossReliability; std::map> CrossConfidence; }; /// Calculates the Reliability and the Cross Confidences for each lowlevel /// Agent for all of there states. /// /// \param Values It gets the States and Reliabilities of /// all connected Slaves inside a vector. /// /// \return it returns a struct \c returnType containing the CrossReliability /// and all CrossConfidence's /// /// \brief To calculate the Reliability it combines [\c std::min() ] the \c /// CrossReliability of all connected Agents. To calculate the feedback it /// iterates over all Agents and their states and uses the \c CrossConfidence /// Function to play what if with the states. returnType operator()( std::vector> &Values) { ReliabilityType combinedInputRel = 1; ReliabilityType combinedCrossRel = 1; ReliabilityType outputReliability; std::vector> Agents; std::map> output; std::vector output_temporary; for (auto tmp : Values) { std::pair tmp2; tmp2.first = std::get<0>(tmp); tmp2.second = std::get<1>(tmp); Agents.push_back(tmp2); } for (auto Value : Values) { id_t id = std::get<0>(Value); StateType sc = std::get<1>(Value); ReliabilityType rel = std::get<2>(Value); // combination method ([]) // get input reliability combinedInputRel = std::min(combinedInputRel, rel); // calculate the cross reliability for this slave agent - ReliabilityType realCrossReliabilityOfSlaveAgent = - CrossReliability->operator()( - {id, sc}, - Agents); // AVERAGE, MULTIPLICATION, CONJUNCTION (best to worst: - // AVERAGE = CONJUNCTION > MULTIPLICATION >> ) + ReliabilityType realCrossReliabilityOfSlaveAgent = CrossReliability( + {id, sc}, + Agents); // AVERAGE, MULTIPLICATION, CONJUNCTION (best to worst: + // AVERAGE = CONJUNCTION > MULTIPLICATION >> ) // get cross confidence output_temporary.clear(); for (StateType thoScore : States[id]) { // calculate the cross reliability for this slave agent ConfOrRel data; data.score = thoScore; - data.Reliability = CrossConfidence->operator()(id, thoScore, Agents); + data.Reliability = CrossConfidence(id, thoScore, Agents); output_temporary.push_back(data); } output.insert({id, output_temporary}); // set combination method // get combined cross reliability combinedCrossRel = std::min(combinedCrossRel, realCrossReliabilityOfSlaveAgent); } // combine cross reliabilites and input reliabilites of all slave agents // NOTE: options would be multiply, average, AND (best to worst: ) // outputReliability = combinedInputRel * combinedCrossRel; // outputReliability = (combinedInputRel + combinedCrossRel) / 2; // set combination method // get output reliability outputReliability = std::min(combinedInputRel, combinedCrossRel); return {outputReliability, output}; } - /// This is the setter for CrossReliability Function - /// \param CrossReliability A pointer to the Functional for the - /// CrossReliability - /// \brief This is needed to calculate the Reliability. It uses this on all - /// values of all lowlevel Agnets. - void setCrossReliability( - std::unique_ptr> - &CrossReliability) { - this->CrossReliability = std::move(CrossReliability); + using Abstraction = + typename rosa::agent::Abstraction; + + struct Functionblock { + bool exists = false; + id_t A; + id_t B; + Abstraction *Funct; + }; + + /// adds a Cross Reliability Profile used to get the Reliability of the state + /// difference + /// \param idA The id of the one \c Agent ( idealy the id of \c Unit to make + /// it absolutly unique ) + /// + /// \param idB The id of the other \c Agent + /// + /// \param Function A unique pointer to an \c Abstraction it would use the + /// difference in score for its input + void addCrossReliabilityProfile(id_t idA, id_t idB, + std::unique_ptr &Function) { + Abstraction *ptr = Function.release(); + Functions.push_back({true, idA, idB, ptr}); + } + + /// sets the cross reliability parameter + void setCrossReliabilityParameter(ReliabilityType val) { + crossReliabilityParameter = val; + } + /// sets the used method to combine the values + /// \param Meth The Function which defines the combination method. + /// \note Inside \c CrossReliability there are static methods defined which + /// can be used. + void setCrossReliabilityMethod( + ReliabilityType (*Meth)(std::vector values)) { + Method = Meth; + } + + ~CrossCombinator() { + for (auto tmp : Functions) + delete tmp.Funct; + Functions.clear(); + } + + /// Calculates the Cross Confidence + /// \brief it uses the state represented by a numerical value and calculates + /// the Confidence of a given agent( represented by there id ) for a given + /// state in connection to all other given agents + /// + /// \note all combination of agents and there corresponding Cross Reliability + /// function have to be specified + ReliabilityType + CrossConfidence(id_t MainAgent, StateType TheoreticalValue, + std::vector> &SlaveAgents) { + + ReliabilityType crossReliabiability; + + std::vector values; + + for (std::pair SlaveAgent : SlaveAgents) { + + if (SlaveAgent.first == MainAgent) + continue; + + if (TheoreticalValue == SlaveAgent.second) + crossReliabiability = 1; + else + crossReliabiability = + 1 / (crossReliabilityParameter * + AbsuluteValue(TheoreticalValue, SlaveAgent.second)); + + // profile reliability + ReliabilityType crossReliabilityFromProfile = getCrossReliabilityFromProfile( + MainAgent, SlaveAgent.first, + AbsuluteValue(TheoreticalValue, SlaveAgent.second)); + values.push_back( + std::max(crossReliabiability, crossReliabilityFromProfile)); + } + return Method(values); + } + + /// Calculates the Cross Reliability + /// \brief it uses the state represented by a numerical value and calculates + /// the Reliability of a given agent( represented by there id ) in connection + /// to all other given agents + /// + /// \note all combination of agents and there corresponding Cross Reliability + /// function have to be specified + ReliabilityType + CrossReliability(std::pair &&MainAgent, + std::vector> &SlaveAgents) { + + ReliabilityType crossReliabiability; + std::vector values; + + for (std::pair SlaveAgent : SlaveAgents) { + + if (SlaveAgent.first == MainAgent.first) + continue; + + if (MainAgent.second == SlaveAgent.second) + crossReliabiability = 1; + else + crossReliabiability = + 1 / (crossReliabilityParameter * + AbsuluteValue(MainAgent.second, SlaveAgent.second)); + + // profile reliability + ReliabilityType crossReliabilityFromProfile = + getCrossReliabilityFromProfile( + MainAgent.first, SlaveAgent.first, + AbsuluteValue(MainAgent.second, SlaveAgent.second)); + values.push_back( + std::max(crossReliabiability, crossReliabilityFromProfile)); + } + return Method(values); + } + + /// predefined combination method + static ReliabilityType CONJUNCTION(std::vector values) { + return *std::min_element(values.begin(), values.end()); + } + + /// predefined combination method + static ReliabilityType AVERAGE(std::vector values) { + return std::accumulate(values.begin(), values.end(), 0.0) / values.size(); } - /// This is the setter for CrossConfidence Function - /// \param CrossConfidence A pointer to the Functional for the \c - /// CrossConfidence \brief This is needed for the feedback for the \c - /// ReliabilityForLowLevelAgents. - void setCrossConfidence( - std::unique_ptr> - &CrossConfidence) { - this->CrossConfidence = std::move(CrossConfidence); + /// predefined combination method + static ReliabilityType DISJUNCTION(std::vector values) { + return *std::max_element(values.begin(), values.end()); } /// This is the adder for the states /// \param id The id of the Agent of the states /// \param States id specific states. this will be copied So that if Slaves /// have different States they can be used correctly. /// \brief The States of all connected lowlevel Agents has to be known to be /// able to iterate over them void addStates(id_t id, std::vector States) { this->States.insert({id, States}); } private: - std::unique_ptr> - CrossReliability; - std::unique_ptr> CrossConfidence; - std::map> States; -}; + /// From Maxi in his code defined as 1 can be changed by set + ReliabilityType crossReliabilityParameter = 1; + + /// Stored Cross Reliability Functions + std::vector Functions; + + /// Method which is used to combine the generated values + ReliabilityType (*Method)(std::vector values) = AVERAGE; + + //-------------------------------------------------------------------------------- + // helper function + /// evalues the absolute distance between two values + /// \note this is actually the absolute distance but to ceep it somewhat + /// conform with maxis code + template Type_t AbsuluteValue(Type_t A, Type_t B) { + return ((A - B) < 0) ? B - A : A - B; + } + + /// verry inefficient searchFunction + Functionblock (*searchFunction)(std::vector vect, + const id_t nameA, const id_t nameB) = + [](std::vector vect, const id_t nameA, + const id_t nameB) -> Functionblock { + for (Functionblock tmp : vect) { + if (tmp.A == nameA && tmp.B == nameB) + return tmp; + if (tmp.A == nameB && tmp.B == nameA) + return tmp; + } + return Functionblock(); + }; + /// evaluest the corisponding LinearFunction thith the score difference + /// \param nameA these two parameters are the unique identifiers + /// \param nameB these two parameters are the unique identifiers + /// for the LinerFunction + /// + /// \note it doesn't matter if they are swapped + ReliabilityType getCrossReliabilityFromProfile(id_t nameA, id_t nameB, + StateType scoreDifference) { + Functionblock block = searchFunction(Functions, nameA, nameB); + if (!block.exists) { + LOG_ERROR(("CrossReliability: Block:" + std::to_string(nameA) + "," + + std::to_string(nameB) + "doesn't exist returning 0")); + return 0; + } + return block.Funct->operator()(scoreDifference); + } +}; } // End namespace agent } // End namespace rosa #endif // ROSA_AGENT_CROSSRELIABILITY_H \ No newline at end of file diff --git a/include/rosa/agent/ReliabilityConfidenceCombinator.h b/include/rosa/agent/ReliabilityConfidenceCombinator.h index 7d9bc18..f6a5b57 100644 --- a/include/rosa/agent/ReliabilityConfidenceCombinator.h +++ b/include/rosa/agent/ReliabilityConfidenceCombinator.h @@ -1,762 +1,762 @@ //===-- rosa/agent/ReliabilityConfidenceCombinator.h ------------*- C++ -*-===// // // The RoSA Framework // //===----------------------------------------------------------------------===// /// /// \file rosa/agent/ReliabilityConfidenceCombinator.h /// /// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at) /// /// \date 2019 /// /// \brief Definition of *ReliabilityConfidenceCombinator* *functionality*. /// /// \note based on Maximilian Goetzinger (maxgot@utu.fi) code in /// CAM_Dirty_include SA-EWS2_Version... inside Agent.cpp /// /// \note By defining and setting Reliability_trace_level it is possible to /// change the level to which it should be traced. \note All classes throw /// runtime errors if not all things are set /// /// \note should the Reliability be capped? /// /// //===----------------------------------------------------------------------===// -#ifndef ROSA_AGENT_RELIABILITY_H -#define ROSA_AGENT_RELIABILITY_H +#ifndef ROSA_AGENT_ReliabilityConfidenceCombinator_H +#define ROSA_AGENT_ReliabilityConfidenceCombinator_H #include "rosa/core/forward_declarations.h" // needed for id_t #include "rosa/support/log.h" #include "rosa/agent/FunctionAbstractions.hpp" #include "rosa/agent/Functionality.h" #include "rosa/agent/RangeConfidence.hpp" #include #include #include /// 0 everything /// 1 vectors /// 2 outputs #define trace_everything 0 #define trace_vectors 1 #define trace_outputs 2 #ifndef Reliability_trace_level #define Reliability_trace_level 0 #endif #define trace_end "\n\n\n" namespace rosa { namespace agent { /// This is a struct with a few methods that make Reliability Combinator /// more readable \tparam StateType The datatype of the States \tparam /// ReliabilityType The datatype of the Reliability template struct ConfOrRel { /// making both Template Arguments readable to make a few things easier typedef StateType _StateType; /// making both Template Arguments readable to make a few things easier typedef ReliabilityType _ReliabilityType; /// The actual place where the data is stored StateType score; /// The actual place where the data is stored ReliabilityType Reliability; ConfOrRel(StateType _score, ReliabilityType _Reliability) : score(_score), Reliability(_Reliability){}; ConfOrRel(){}; /// Pushes the Data in a Human readable form /// \param out The stream where it is written to /// \param c The struct itself friend std::ostream &operator<<(std::ostream &out, const ConfOrRel &c) { out << "Score: " << c.score << "\t Reliability: " << c.Reliability << " "; return out; } /// needed or it throws an clang diagnosic error typedef std::map map; // needed or it throws an clang diagnosic error /// Filles the vector with the data inside the map /// \param me The vector to be filled /// \param data The data wich is to be pushed into the vector friend std::vector &operator<<(std::vector &me, map &&data) { for (auto tmp : data) { me.push_back(ConfOrRel(tmp.first, tmp.second)); #if Reliability_trace_level <= trace_everything LOG_TRACE_STREAM << "\n" << ConfOrRel(tmp.first, tmp.second) << trace_end; #endif } return me; } /// This is to push the data inside a vector in a human readable way into the /// ostream \param out The ostream \param c The vector which is read friend std::ostream &operator<<(std::ostream &out, const std::vector &c) { std::size_t index = 0; for (ConfOrRel data : c) { out << index << " : " << data << "\n"; index++; } return out; } }; /// This calculates the minimum of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector min(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = std::min(tmp.Reliability, value); return me; } /// This calculates the maximum of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector max(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = std::max(tmp.Reliability, value); return me; } /// This calculates the average of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector average(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = (tmp.Reliability + value) / 2; return me; } /// This calculates the average of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector mult(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = tmp.Reliability * value / 2; return me; } /// This average's the Reliabilities of the same Scores template std::vector average(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.score == tmp_other.score) { tmp_me.Reliability = (tmp_me.Reliability + tmp_other.Reliability) / 2; } } return A; } /// This min's the Reliabilities of the same Scores template std::vector min(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.score == tmp_other.score) { tmp_me.Reliability = std::min(tmp_me.Reliability + tmp_other.Reliability); } } return A; } /// This max's the Reliabilities of the same Scores template std::vector max(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.score == tmp_other.score) { tmp_me.Reliability = std::max(tmp_me.Reliability + tmp_other.Reliability); } } return A; } /// This mult's the Reliabilities of the same Scores template std::vector mult(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.score == tmp_other.score) { tmp_me.Reliability = tmp_me.Reliability * tmp_other.Reliability; } } return A; } /// This is the combinator for Reliability and confidences it takes the /// Sensor value, its "History" and feedback from \c /// CrossCombinator to calculate different Reliabilities. /// \tparam SensorValueType Datatype of the Sensor value ( Typically /// double or float) \tparam StateType Datatype of the State ( Typically long or /// int) /// \tparam ReliabilityType Datatype of the Reliability ( /// Typically double or float) /// /// \note more information about how it calculates /// the Reliabilities /// \verbatim ///---------------------------------------------------------------------------------- /// /// /// ->Reliability---> getInputReliability() /// | | /// | V /// Sensor Value ---| PossibleScoreCombinationMethod -> next line /// | A | /// | | V /// ->Confidence--- getPossibleScores() /// ///----------------------------------------------------------------------------------- /// /// feedback /// | /// V /// ValuesFromMaster /// | -> History ---| /// V | V /// here -> FeedbackCombinatorMethod --------> HistoryCombinatorMethod->nextline /// | | /// V V /// getpossibleScoresWithMasterFeedback() getPossibleScoresWithHistory() /// ///---------------------------------------------------------------------------------- /// /// here -> sort -> most likely -> mostLikelySoreAndReliability() /// /// --------------------------------------------------------------------------------- /// \endverbatim /// the mentioned methods are early outs so if two ore more of them are run in /// the same step they will be interpreted as different time steps ///
 /// Default values for Combinators:
 ///	InputReliabilityCombinator		= combinationMin;
 ///	PossibleScoreCombinationMethod	= PossibleScoreCombinationMethodMin;
 /// FeedbackCombinatorMethod		= FeedbackCombinatorMethodAverage;
 /// HistoryCombinatorMethod			= HistoryCombinatorMethodMax;
 ///	
/// /// /// template class ReliabilityAndConfidenceCombinator { public: static_assert(std::is_arithmetic::value, "LowLevel: SensorValueType has to an arithmetic type\n"); static_assert(std::is_arithmetic::value, "LowLevel: StateType has to an arithmetic type\n"); static_assert(std::is_arithmetic::value, "LowLevel: ReliabilityType has to an arithmetic type\n"); /// Typedef to shorten the writing. /// \c ConfOrRel typedef ConfOrRel ConfOrRel; /// Calculates the input reliability by combining Reliability of the Sensor /// and the Slope Reliability \param SensorValue The sensor Value \note to set /// the combination method \c setInputReliabilityCombinator() auto getInputReliability(SensorValueType SensorValue) { auto inputReliability = getReliability(SensorValue, previousSensorValue, valueSetCounter); previousSensorValue = SensorValue; PreviousSensorValueExists = true; return inputReliability; } /// Calculates the Reliability /// \param SensorValue The current Values of the Sensor /// /// \return Reliability and Score of the current SensorValue /// ConfOrRel mostLikelySoreAndReliability(SensorValueType SensorValue) { #if Reliability_trace_level <= trace_outputs LOG_TRACE_STREAM << "\nTrace level is set to: " << Reliability_trace_level << "\n" << "Will trace: " << ((Reliability_trace_level == trace_outputs) ? "outputs" : (Reliability_trace_level == trace_vectors) ? "vectors" : (Reliability_trace_level == trace_everything) ? "everything" : "undefined") << trace_end; #endif std::vector ActuallPossibleScores; std::vector possibleScores; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleScores << Confidence->operator()(SensorValue); possibleScores = PossibleScoreCombinationMethod(possibleScores, inputReliability); possibleScores = FeedbackCombinatorMethod(possibleScores, ValuesFromMaster); saveInHistory(possibleScores); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\nActuallPossibleScores:\n" << possibleScores << trace_end; LOG_TRACE_STREAM << "\npossibleScores:\n" << possibleScores << trace_end; #endif possibleScores.clear(); possibleScores = getAllPossibleScoresBasedOnHistory(); std::sort(possibleScores.begin(), possibleScores.end(), [](ConfOrRel A, ConfOrRel B) -> bool { return A.Reliability > B.Reliability; }); #if Reliability_trace_level <= trace_outputs LOG_TRACE_STREAM << "\noutput lowlevel: " << possibleScores.at(0) << trace_end; #endif return possibleScores.at(0); } /// Calculates the possible Scores /// \param SensorValue the Sensor Value /// \brief it combines the input reliability and the confidence of the Sensor. /// The use combination method can be set using \c /// setPossibleScoreCombinationMethod() auto getPossibleScores(SensorValueType SensorValue) { std::vector possibleScores; ReliabilityType inputReliability = getInputReliability(SensorValue); // get input rel() #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleScores << Confidence->operator()(SensorValue); possibleScores = PossibleScoreCombinationMethod(possibleScores, inputReliability); return possibleScores; } /// return the Possible Values with the feedback in mind /// \param SensorValue The sensor Value /// \brief it combines the input reliability and the confidence of the Sensor. /// The combines them with FeedbackCombinatorMethod and returns the result. auto getpossibleScoresWithMasterFeedback(SensorValueType SensorValue) { std::vector possibleScores; ReliabilityType inputReliability = getInputReliability(SensorValue); // get input rel() #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleScores << Confidence->operator()(SensorValue); possibleScores = PossibleScoreCombinationMethod(possibleScores, inputReliability); possibleScores = FeedbackCombinatorMethod(possibleScores, ValuesFromMaster); return possibleScores; } /// returns all possible Scores and Reliabilities with the History in mind /// \param SensorValue the Sensor value /// how this is done is described at the class. auto getPossibleScoresWithHistory(SensorValueType SensorValue) { std::vector ActuallPossibleScores; std::vector possibleScores; ReliabilityType inputReliability = getInputReliability(SensorValue); // get input rel() #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleScores << Confidence->operator()(SensorValue); possibleScores = PossibleScoreCombinationMethod(possibleScores, inputReliability); possibleScores = FeedbackCombinatorMethod(possibleScores, ValuesFromMaster); saveInHistory(possibleScores); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\nActuallPossibleScores:\n" << possibleScores << trace_end; LOG_TRACE_STREAM << "\npossibleScores:\n" << possibleScores << trace_end; #endif possibleScores.clear(); return getAllPossibleScoresBasedOnHistory(); } /// feedback for this functionality most commonly it comes from a Master Agent /// \param ValuesFromMaster The Scores + Reliability for the feedback /// \brief This input kind of resembles a confidence but not /// directly it more or less says: compared to the other Scores inside the /// System these are the Scores with the Reliability that you have. void feedback(std::vector ValuesFromMaster) { this->ValuesFromMaster = ValuesFromMaster; } // // ----------------------Reliability and Confidence Function setters---------- // /// This is the setter for Confidence Function /// \param Confidence A pointer to the Functional for the \c Confidence of the /// Sensor value void setConfidenceFunction( std::unique_ptr> &Confidence) { this->Confidence = std::move(Confidence); } /// This is the setter for Reliability Function /// \param Reliability A pointer to the Functional for the Reliability /// \brief The Reliability takes the current Sensor value and return the /// Reliability of the value. void setReliabilityFunction( std::unique_ptr> &Reliability) { this->Reliability = std::move(Reliability); } /// This is the setter for ReliabilitySlope Function /// \param ReliabilitySlope A pointer to the Functional for the /// ReliabilitySlope /// \brief The ReliabilitySlope takes the difference of the current Sensor /// Value to the last one and tells you how likely the change is. void setReliabilitySlopeFunction( std::unique_ptr> &ReliabilitySlope) { this->ReliabilitySlope = std::move(ReliabilitySlope); } /// This is the setter for TimeConfidence Function /// \param TimeConfidence A pointer to the Functional for the TimeConfidence /// \brief The time function takes the position in the History with greater /// equals older and return a Reliability of how "relevant" it is. void setTimeConfidenceFunction( std::unique_ptr> &TimeConfidence) { this->TimeConfidence = std::move(TimeConfidence); } /// This is the setter for all possible States /// \param states A vector containing all states /// \brief This exists even though \c State Type is an arithmetic Type because /// the states do not need to be "next" to each other ( ex. states={ 1 7 24 }) void setStates(std::vector states) { this->States = states; } /// This sets the Maximum length of the History /// \param length The length void setHistoryLength(std::size_t length) { this->HistoryMaxSize = length; } /// This sets the Value set Counter /// \param ValueSetCounter the new Value /// \note This might actually be only an artifact. It is only used to get the /// reliability from the \c ReliabilitySlope [ ReliabilitySlope->operator()( /// (lastValue - actualValue) / (SensorValueType)valueSetCounter) ] void setValueSetCounter(unsigned int ValueSetCounter) { this->valueSetCounter = ValueSetCounter; } // // ----------------combinator setters----------------------------------------- // /// This sets the combination method used by the History /// \param Meth the method which should be used. predefined \c /// HistoryCombinatorMethodMin() \c HistoryCombinatorMethodMax() \c /// HistoryCombinatorMethodMult() \c HistoryCombinatorMethodAverage() void setHistoryCombinatorMethod(ReliabilityType (*Meth)(ReliabilityType, ReliabilityType)) { HistoryCombinatorMethod = Meth; } /// sets the predefined method for the combination of the possible scores and /// the master \param Meth the method predefined ones are /// \c FeedbackCombinatorMethodAverage() \c FeedbackCombinatorMethodMin() \c /// FeedbackCombinatorMethodMax() \c FeedbackCombinatorMethodMult() void setFeedbackCombinatorMethod(std::vector (*Meth)( std::vector, std::vector)) { FeedbackCombinatorMethod = Meth; } /// Sets the used combination method for Possible Scores /// \param Meth a Pointer for the used Method. Predefined methods \c /// PossibleScoreCombinationMethodMin() \c PossibleScoreCombinationMethodMax() /// \c PossibleScoreCombinationMethodAverage() void setPossibleScoreCombinationMethod( std::vector (*Meth)(std::vector, ReliabilityType)) { PossibleScoreCombinationMethod = Meth; } /// sets the input reliability combinator method /// \param method the to be used method /// \note there are predefined methods \c combinationMin() \c combinationMax() /// \c combinationAverage() void setInputReliabilityCombinator( ReliabilityType (*method)(ReliabilityType, ReliabilityType)) { InputReliabilityCombinator = method; } // // ----------------predefined combinators------------------------------------ // /// predefined Method static ReliabilityType HistoryCombinatorMethodMin(ReliabilityType A, ReliabilityType B) { return std::min(A, B); } /// predefined Method static ReliabilityType HistoryCombinatorMethodMax(ReliabilityType A, ReliabilityType B) { return std::max(A, B); } /// predefined Method static ReliabilityType HistoryCombinatorMethodMult(ReliabilityType A, ReliabilityType B) { return A * B; } /// predefined Method static ReliabilityType HistoryCombinatorMethodAverage(ReliabilityType A, ReliabilityType B) { return (A + B) / 2; } /// predefined method static std::vector FeedbackCombinatorMethodAverage(std::vector A, std::vector B) { return average(A, B); } /// predefined method static std::vector FeedbackCombinatorMethodMin(std::vector A, std::vector B) { return min(A, B); } /// predefined method static std::vector FeedbackCombinatorMethodMax(std::vector A, std::vector B) { return max(A, B); } /// predefined method static std::vector FeedbackCombinatorMethodMult(std::vector A, std::vector B) { return mult(A, B); } /// Predefined combination method for possible Scores static std::vector PossibleScoreCombinationMethodMin(std::vector A, ReliabilityType B) { return min(A, B); } /// Predefined combination method for possible Scores static std::vector PossibleScoreCombinationMethodMax(std::vector A, ReliabilityType B) { return max(A, B); } /// Predefined combination method for possible Scores static std::vector PossibleScoreCombinationMethodAverage(std::vector A, ReliabilityType B) { return average(A, B); } /// Predefined combination method for possible Scores static std::vector PossibleScoreCombinationMethodMult(std::vector A, ReliabilityType B) { return mult(A, B); } /// The predefined min combinator method static ReliabilityType combinationMin(ReliabilityType A, ReliabilityType B) { return std::min(A, B); } /// The predefined max combinator method static ReliabilityType combinationMax(ReliabilityType A, ReliabilityType B) { return std::max(A, B); } /// The predefined average combinator method static ReliabilityType combinationAverage(ReliabilityType A, ReliabilityType B) { return (A + B) / 2; } /// The predefined average combinator method static ReliabilityType combinationMult(ReliabilityType A, ReliabilityType B) { return A * B; } private: std::vector> History; std::size_t HistoryMaxSize; std::vector ValuesFromMaster; SensorValueType previousSensorValue; unsigned int valueSetCounter; std::vector States; bool PreviousSensorValueExists = false; std::unique_ptr> Confidence; std::unique_ptr> Reliability; std::unique_ptr> ReliabilitySlope; std::unique_ptr> TimeConfidence; // combination functions ReliabilityType (*InputReliabilityCombinator)( ReliabilityType, ReliabilityType) = combinationMin; std::vector (*PossibleScoreCombinationMethod)( std::vector, ReliabilityType) = PossibleScoreCombinationMethodMin; std::vector (*FeedbackCombinatorMethod)(std::vector, std::vector) = FeedbackCombinatorMethodAverage; ReliabilityType (*HistoryCombinatorMethod)(ReliabilityType, ReliabilityType) = HistoryCombinatorMethodMax; /*--------------------------------- needed Functions * -----------------------------------------------------*/ /// returns the Reliability /// \param actualValue The Value of the Sensor /// \param lastValue of the Sensor this is stored in the class /// \param valueSetCounter It has an effect on the difference of the current /// and last value This might not be needed anymore /// \brief it returns the combination the \c Reliability function and \c /// ReliabilitySlope if the previous value exists. if it doesn't it only /// returns the \c Reliability function value. ReliabilityType getReliability(SensorValueType actualValue, SensorValueType lastValue, unsigned int valueSetCounter) { ReliabilityType relAbs = Reliability->operator()(actualValue); if (PreviousSensorValueExists) { ReliabilityType relSlo = ReliabilitySlope->operator()( (lastValue - actualValue) / (SensorValueType)valueSetCounter); return InputReliabilityCombinator(relAbs, relSlo); } else return relAbs; } /// adapts the possible Scores by checking the History and combines those /// values. currently with max /// \brief combines the historic values with the \c TimeConfidence function /// and returns the maximum Reliability for all Scores. std::vector getAllPossibleScoresBasedOnHistory() { // iterate through all history entries std::size_t posInHistory = 0; std::vector possibleScores; for (auto pShE = History.begin(); pShE < History.end(); pShE++, posInHistory++) { // iterate through all possible scores of each history entry for (ConfOrRel &pSh : *pShE) { StateType historyScore = pSh.score; ReliabilityType historyConf = pSh.Reliability; historyConf = historyConf * TimeConfidence->operator()(posInHistory); bool foundScore = false; for (ConfOrRel &pS : possibleScores) { if (pS.score == historyScore) { pS.Reliability = HistoryCombinatorMethod(pS.Reliability, historyConf); foundScore = true; } } if (foundScore == false) { ConfOrRel possibleScore; possibleScore.score = historyScore; possibleScore.Reliability = historyConf; possibleScores.push_back(possibleScore); } } } return possibleScores; } /// saves the Scores in the History /// \brief It checks the incoming scores if any have a Reliability greater /// than 0.5 all of them get saved inside the History and then the /// History get shortened to the maximal length. It only saves the Value if /// the History is empty. /// /// \param actualPossibleScores The Scores which should be saved /// /// \note Does the History really make sense if the values are to small it /// only stores something if it's empty and not if it isn't completely filled void saveInHistory(std::vector actualPossibleScores) { // check if the reliability of at least one possible score is high enough bool atLeastOneRelIsHigh = false; for (ConfOrRel pS : actualPossibleScores) { if (pS.Reliability > 0.5) { atLeastOneRelIsHigh = true; } } // save possible scores if at least one possible score is high enough (or if // the history is empty) if (History.size() < 1 || atLeastOneRelIsHigh == true) { History.insert(History.begin(), actualPossibleScores); // if history size is higher than allowed, save oldest element while (History.size() > HistoryMaxSize) { // delete possibleScoreHistory.back(); History.pop_back(); } } } }; } // namespace agent } // namespace rosa -#endif // !ROSA_AGENT_RELIABILITY_H +#endif // !ROSA_AGENT_ReliabilityConfidenceCombinator_H