diff --git a/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp b/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp index 593db3f..3f88ffa 100644 --- a/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp +++ b/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp @@ -1,253 +1,253 @@ //===- examples/agent-functionalities/Reliability-functionality.cpp *C++-*-===// // // The RoSA Framework // // Distributed under the terms and conditions of the Boost Software License 1.0. // See accompanying file LICENSE. // // If you did not receive a copy of the license file, see // http://www.boost.org/LICENSE_1_0.txt. // //===----------------------------------------------------------------------===// /// /// \file examples/agent-functionalities/Reliability-functionality.cpp /// /// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at ) /// /// \date 2019 /// /// \brief A simple example on defining Relianility Functionalities. /// //===----------------------------------------------------------------------===// #define Reliability_trace_level 5 #include "rosa/config/version.h" #include "rosa/support/log.h" #include "rosa/agent/CrossCombinator.h" #include "rosa/agent/RangeConfidence.hpp" -#include "rosa/agent/ReliabilityConfidenceCombinator.h" +#include "rosa/agent/ReliabilityConfidenceCombination.h" #include #include using namespace rosa::agent; int main(void) { typedef double SensorValueType; typedef long StateType; typedef double ReliabilityType; std::shared_ptr> Confidence(new RangeConfidence( {{0, PartialFunction( { {{0, 3}, std::make_shared>( 0, 1.0 / 3)}, {{3, 6}, std::make_shared>(1, 0)}, {{6, 9}, std::make_shared>( 3.0, -1.0 / 3)}, }, 0)}, {1, PartialFunction( { {{6, 9}, std::make_shared>( -2, 1.0 / 3)}, {{9, 12}, std::make_shared>(1, 0)}, {{12, 15}, std::make_shared>( 5, -1.0 / 3)}, }, 0)}, {2, PartialFunction( { {{12, 15}, std::make_shared>( -4, 1.0 / 3)}, {{15, 18}, std::make_shared>(1, 0)}, {{18, 21}, std::make_shared>( 7, -1.0 / 3)}, }, 0)}})); std::shared_ptr> Reliability( new LinearFunction(1, -1.0 / 3)); std::shared_ptr> ReliabilitySlope( new LinearFunction(1, -1.0 / 3)); std::shared_ptr> TimeConfidence( new LinearFunction(1, -1.0 / 3)); auto lowlevel = - new ReliabilityAndConfidenceCombinator(); + new ReliabilityAndConfidenceCombination(); std::vector states; states.push_back(0); states.push_back(1); states.push_back(2); lowlevel->setConfidenceFunction(Confidence); lowlevel->setAbsoluteReliabilityFunction(Reliability); lowlevel->setReliabilitySlopeFunction(ReliabilitySlope); lowlevel->setTimeFunctionForLikelinessFunction(TimeConfidence); lowlevel->setIdentifiers(states); lowlevel->setHistoryLength(2); lowlevel->setTimeStep(1); /* ----------------------------- Do Something * ---------------------------------------------------------------- */ std::cout << "Testing the lowlevel component with static feedback telling it " "that the most lickely state is 2.\n"; for (int a = 0; a < 30; a++) std::cout << "a: " << a << "\n" << (lowlevel->feedback({{0, 0}, {1, 0.3}, {2, 0.8}}), lowlevel->bestSymbol(a)) << "\n"; std::cout << "---------------------------------------------------------------" "---------------------------------\n"; std::cout << "------------------------------------High level " "Test---------------------------------------------\n"; std::cout << "Configured in a way that the Master thinks that both Sensors " "should have the same State.\n While feeding both the \"opposite\" " "values one acending the other decending from the maximum.\n"; std::shared_ptr> Confidence2(new RangeConfidence( {{0, PartialFunction( { {{0, 3}, std::make_shared>( 0, 1.0 / 3)}, {{3, 6}, std::make_shared>(1, 0)}, {{6, 9}, std::make_shared>( 3.0, -1.0 / 3)}, }, 0)}, {1, PartialFunction( { {{6, 9}, std::make_shared>( -2, 1.0 / 3)}, {{9, 12}, std::make_shared>(1, 0)}, {{12, 15}, std::make_shared>( 5, -1.0 / 3)}, }, 0)}, {2, PartialFunction( { {{12, 15}, std::make_shared>( -4, 1.0 / 3)}, {{15, 18}, std::make_shared>(1, 0)}, {{18, 21}, std::make_shared>( 7, -1.0 / 3)}, }, 0)}})); std::shared_ptr> Reliability2( new LinearFunction(1, -1.0 / 9)); std::shared_ptr> ReliabilitySlope2( new LinearFunction(1, -1.0 / 9)); std::shared_ptr> TimeConfidence2( new LinearFunction(1, -1.0 / 9)); auto lowlevel2 = - new ReliabilityAndConfidenceCombinator(); + new ReliabilityAndConfidenceCombination(); std::vector states2; states2.push_back(0); states2.push_back(1); states2.push_back(2); lowlevel2->setConfidenceFunction(Confidence2); lowlevel2->setAbsoluteReliabilityFunction(Reliability2); lowlevel2->setReliabilitySlopeFunction(ReliabilitySlope2); lowlevel2->setTimeFunctionForLikelinessFunction(TimeConfidence2); lowlevel2->setIdentifiers(states2); lowlevel2->setHistoryLength(2); lowlevel2->setTimeStep(1); CrossCombinator *highlevel = new CrossCombinator(); std::shared_ptr> func1(new PartialFunction( { {{0, 1}, std::make_shared>(1, 0)}, {{1, 2}, std::make_shared>(2, -1.0)}, }, 0)); highlevel->addCrossLikelinessProfile(0, 1, func1); highlevel->setCrossLikelinessCombinatorMethod( CrossCombinator::predefinedMethods::AVERAGE); highlevel->setCrossLikelinessParameter(1); highlevel->addIdentifiers(0, states); highlevel->addIdentifiers(1, states); for (int a = 0; a < 21; a++) { auto out1 = lowlevel->bestSymbol(a), out2 = lowlevel2->bestSymbol((int)21 - a); std::cout << "s1: " << out1 << "\ns2:" << out2 << "\n"; std::vector> tmp2; tmp2.push_back({0, out1.Identifier, out1.Likeliness}); tmp2.push_back({1, out2.Identifier, out2.Likeliness}); auto out_o = highlevel->operator()(tmp2); std::cout << "it: " << a << "\t rel: " << out_o.CrossLikeliness << "\n"; std::cout << "\t subs:\n"; for (auto q : out_o.Likeliness) { std::cout << "\t\t id:" << q.first << "\n"; /* for(auto z: q.second) { std::cout << "\t\t\t Identifier: " << z.Identifier << "\tRel: " << z.Likeliness << "\n"; tmp.push_back({z.Identifier,z.Likeliness}); } */ for (auto z : q.second) { std::cout << "\t\t\t Identifier: " << z.Identifier << "\tRel: " << z.Likeliness << "\n"; } if (q.first == 0) lowlevel->feedback(q.second); else lowlevel2->feedback(q.second); } } /* ----------------------------- Cleanup * --------------------------------------------------------------------- */ delete highlevel; delete lowlevel; delete lowlevel2; } diff --git a/include/rosa/agent/CrossCombinator.h b/include/rosa/agent/CrossCombinator.h index ead61f1..04efc8f 100644 --- a/include/rosa/agent/CrossCombinator.h +++ b/include/rosa/agent/CrossCombinator.h @@ -1,558 +1,558 @@ //===-- rosa/delux/CrossCombinator.h ----------------------------*- C++ -*-===// // // The RoSA Framework // // Distributed under the terms and conditions of the Boost Software License 1.0. // See accompanying file LICENSE. // // If you did not receive a copy of the license file, see // http://www.boost.org/LICENSE_1_0.txt. // //===----------------------------------------------------------------------===// /// /// \file rosa/agent/CrossCombinator.h /// /// \author Daniel Schnoell /// /// \date 2019 /// \note based on Maximilian Goetzinger(maxgot @utu.fi) code in /// CAM_Dirty_include SA-EWS2_Version... inside Agent.cpp /// /// \brief /// /// \todo there is 1 exception that needs to be handled correctly. /// \note the default search function is extremely slow maybe this could be done /// via template for storage class and the functions/methods to efficiently find /// the correct LinearFunction //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_CROSSCOMBINATOR_H #define ROSA_AGENT_CROSSCOMBINATOR_H #include "rosa/agent/Abstraction.hpp" #include "rosa/agent/Functionality.h" -#include "rosa/agent/ReliabilityConfidenceCombinator.h" +#include "rosa/agent/ReliabilityConfidenceCombination.h" #include "rosa/core/forward_declarations.h" // needed for id_t #include "rosa/support/log.h" // needed for error "handling" // nedded headers #include #include //assert #include // for static methods #include #include namespace rosa { namespace agent { template std::vector> &operator<<( std::vector> &me, std::vector> Values) { for (auto tmp : Values) { std::pair tmp2; tmp2.first = std::get<0>(tmp); tmp2.second = std::get<1>(tmp); me.push_back(tmp2); } return me; } /// This is the Combinator class for cross Reliabilities. It has many functions /// with different purposes /// \brief It takes the Identifiers and Reliabilities of all given ids and /// calculates the Likeliness of them together. Also it can creates the /// feedback that is needed by the \c LikelinessAndConfidenceCombinator, which /// is a kind of confidence. /// /// \tparam IdentifierType Data type of the Identifier ( Typically double /// or float) \tparam LikelinessType Data type of the Likeliness ( Typically /// long or int) // this might be swapped /// /// \note This class is commonly in a master slave relationship as master with /// \c LikelinessAndConfidenceCombinator. The \c operator()() combines the /// Likeliness of all connected Slaves and uses that as its own Likeliness /// also creates the feedback for the Slaves. /// /// \note more information about how the Likeliness and feedback is /// created at \c operator()() , \c getCombinedCrossLikeliness() , \c /// getCombinedInputLikeliness() , \c getOutputLikeliness() [ this is the /// used Likeliness ], \c getCrossLikeliness() [ this is the feedback /// for all Compares ] /// /// a bit more special Methods \c CrossConfidence() ,\c CrossLikeliness() template class CrossCombinator { public: static_assert(std::is_arithmetic::value, "HighLevel: IdentifierType has to be an arithmetic type\n"); static_assert(std::is_arithmetic::value, "HighLevel: LikelinessType has to be an arithmetic type\n"); // --------------------------------------------------------------------------- // useful definitions // --------------------------------------------------------------------------- /// typedef To shorten the writing. /// \c Symbol using Symbol = Symbol; /// To shorten the writing. using Abstraction = typename rosa::agent::Abstraction; /// The return type for the \c operator()() Method struct returnType { LikelinessType CrossLikeliness; std::map> Likeliness; }; // ------------------------------------------------------------------------- // Relevant Methods // ------------------------------------------------------------------------- /// Calculates the CrossLikeliness and the Likeliness for each id for all /// of there Identifiers. /// /// \param Values It gets the Identifiers and Reliabilities of /// all connected Compare Agentss inside a vector. /// /// \return it returns a struct \c returnType containing the \c /// getCombinedCrossLikeliness() and \c getCrossLikeliness() returnType operator()( std::vector> Values) { return {getOutputLikeliness(Values), getCrossLikeliness(Values)}; } /// returns the combined Cross Likeliness via \c /// LikelinessCombinationMethod \c /// setLikelinessCombinationMethod() for all ids \c /// CrossLikeliness() \param Values the used Values LikelinessType getCombinedCrossLikeliness( const std::vector> &Values) noexcept { LikelinessType Likeliness = -1; std::vector> Agents; Agents << Values; for (auto Value : Values) { id_t id = std::get<0>(Value); IdentifierType sc = std::get<1>(Value); // calculate the cross Likeliness for this Compare agent LikelinessType realCrossLikelinessOfCompareInput = CrossLikeliness({id, sc}, Agents); if (Likeliness != -1) Likeliness = LikelinessCombinationMethod( Likeliness, realCrossLikelinessOfCompareInput); else Likeliness = realCrossLikelinessOfCompareInput; } return Likeliness; } /// returns the combined via \c CombinedInputLikelinessCombinationMethod \c /// setCombinedInputLikelinessCombinationMethod() input Likeliness \param Values /// the used Values LikelinessType getCombinedInputLikeliness( const std::vector> &Values) noexcept { LikelinessType combinedInputRel = -1; std::vector> Agents; Agents << Values; for (auto Value : Values) { LikelinessType rel = std::get<2>(Value); if (combinedInputRel != -1) combinedInputRel = CombinedInputLikelinessCombinationMethod(combinedInputRel, rel); else combinedInputRel = rel; } return combinedInputRel; } /// returns the combination via \c OutputLikelinessCombinationMethod \c /// setOutputLikelinessCombinationMethod() of the Cross Likeliness and /// input Likeliness \param Values the used Values LikelinessType getOutputLikeliness( const std::vector> &Values) noexcept { return OutputLikelinessCombinationMethod( getCombinedInputLikeliness(Values), getCombinedCrossLikeliness(Values)); } /// returns the crossConfidence for all ids \c CrossConfidence() /// \param Values the used Values std::map> getCrossLikeliness( const std::vector> &Values) noexcept { std::vector> Agents; std::map> output; std::vector output_temporary; Agents << Values; for (auto Value : Values) { id_t id = std::get<0>(Value); output_temporary.clear(); for (IdentifierType thoIdentifier : Identifiers[id]) { Symbol data; data.Identifier = thoIdentifier; data.Likeliness = CrossConfidence(id, thoIdentifier, Agents); output_temporary.push_back(data); } output.insert({id, output_temporary}); } return output; } /// Calculates the Cross Confidence /// \brief it uses the Identifier value and calculates /// the Confidence of a given agent( represented by their id ) for a given /// Identifiers in connection to all other given agents /// /// \note all combination of agents and there corresponding Cross Likeliness /// function have to be specified LikelinessType CrossConfidence(const id_t &MainAgent, const IdentifierType &TheoreticalValue, const std::vector> &CompareInputs) noexcept { LikelinessType crossReliabiability; std::vector values; for (std::pair CompareInput : CompareInputs) { if (CompareInput.first == MainAgent) continue; if (TheoreticalValue == CompareInput.second) crossReliabiability = 1; else crossReliabiability = 1 / (crossLikelinessParameter * std::abs(TheoreticalValue - CompareInput.second)); // profile Likeliness LikelinessType crossLikelinessFromProfile = getCrossLikelinessFromProfile( MainAgent, CompareInput.first, std::abs(TheoreticalValue - CompareInput.second)); values.push_back( std::max(crossReliabiability, crossLikelinessFromProfile)); } return Method(values); } /// Calculates the Cross Likeliness /// \brief it uses the Identifier value and calculates /// the Likeliness of a given agent( represented by their id ) in connection /// to all other given agents /// /// \note all combination of agents and there corresponding Cross Likeliness /// function have to be specified LikelinessType CrossLikeliness(const std::pair &MainAgent, const std::vector> &CompareInputs) noexcept { LikelinessType crossReliabiability; std::vector values; for (std::pair CompareInput : CompareInputs) { if (CompareInput.first == MainAgent.first) continue; if (MainAgent.second == CompareInput.second) crossReliabiability = 1; else crossReliabiability = 1 / (crossLikelinessParameter * std::abs(MainAgent.second - CompareInput.second)); // profile Likeliness LikelinessType crossLikelinessFromProfile = getCrossLikelinessFromProfile( MainAgent.first, CompareInput.first, std::abs(MainAgent.second - CompareInput.second)); values.push_back( std::max(crossReliabiability, crossLikelinessFromProfile)); } return Method(values); } // -------------------------------------------------------------------------- // Defining the class // -------------------------------------------------------------------------- /// adds a Cross Likeliness Profile used to get the Likeliness of the /// Identifier difference /// /// \param idA The id of the one \c Agent ( ideally the id of \c Unit to make /// it absolutely unique ) /// /// \param idB The id of the other \c Agent /// /// \param Function A shared pointer to an \c Abstraction it would use the /// difference in Identifier for its input void addCrossLikelinessProfile( //conf const id_t &idA, const id_t &idB, const std::shared_ptr &Function) noexcept { Functions.push_back({true, idA, idB, Function}); //confidence Profiles } /// sets the cross Likeliness parameter void setCrossLikelinessParameter(const LikelinessType &val) noexcept { crossLikelinessParameter = val; } /// This is the adder for the Identifiers /// \param id The id of the Agent of the Identifiers /// \param _Identifiers id specific Identifiers. This will be copied So that if /// Compares have different Identifiers they can be used correctly. \brief The /// Identifiers of all connected Compare Agents has to be known to be able to /// iterate over them void addIdentifiers(const id_t &id, //add IdentifierIdentifiers const std::vector &_Identifiers) noexcept { Identifiers.insert({id, _Identifiers}); } // ------------------------------------------------------------------------- // Combinator Settings // ------------------------------------------------------------------------- /// sets the used method to combine the values /// \param Meth the method which should be used. predefined functions in the /// struct \c predefinedMethods \c /// CONJUNCTION() \c AVERAGE() \c DISJUNCTION() void setCrossLikelinessCombinatorMethod( const std::function values)> &Meth) noexcept { Method = Meth; } /// sets the combination method for the combined cross Likeliness /// \param Meth the method which should be used. predefined functions in the /// struct \c predefinedMethods LikelinessCombinationMethod() void setLikelinessCombinationMethod( const std::function &Meth) noexcept { LikelinessCombinationMethod = Meth; } /// sets the combined input rel method /// \param Meth the method which should be used. predefined functions in the /// struct \c predefinedMethods CombinedInputLikelinessCombinationMethod() void setCombinedInputLikelinessCombinationMethod( const std::function &Meth) noexcept { CombinedInputLikelinessCombinationMethod = Meth; } /// sets the used OutputLikelinessCombinationMethod /// \param Meth the method which should be used. predefined functions in the /// struct \c predefinedMethods OutputLikelinessCombinationMethod() void setOutputLikelinessCombinationMethod( const std::function &Meth) noexcept { OutputLikelinessCombinationMethod = Meth; } // ------------------------------------------------------------------------- // Predefined Functions // ------------------------------------------------------------------------- /// This struct is a pseudo name space to have easier access to all predefined /// methods while still not overcrowding the class it self struct predefinedMethods { /// predefined combination method static LikelinessType CONJUNCTION(std::vector values) { return *std::min_element(values.begin(), values.end()); } /// predefined combination method static LikelinessType AVERAGE(std::vector values) { return std::accumulate(values.begin(), values.end(), 0.0) / values.size(); } /// predefined combination method static LikelinessType DISJUNCTION(std::vector values) { return *std::max_element(values.begin(), values.end()); } /// predefined combination Method static LikelinessType LikelinessCombinationMethodMin(LikelinessType A, LikelinessType B) { return std::min(A, B); } /// predefined combination Method static LikelinessType LikelinessCombinationMethodMax(LikelinessType A, LikelinessType B) { return std::max(A, B); } /// predefined combination Method static LikelinessType LikelinessCombinationMethodMult(LikelinessType A, LikelinessType B) { return A * B; } /// predefined combination Method static LikelinessType LikelinessCombinationMethodAverage(LikelinessType A, LikelinessType B) { return (A + B) / 2; } /// predefined combination Method static LikelinessType CombinedInputLikelinessCombinationMethodMin(LikelinessType A, LikelinessType B) { return std::min(A, B); } /// predefined combination Method static LikelinessType CombinedInputLikelinessCombinationMethodMax(LikelinessType A, LikelinessType B) { return std::max(A, B); } /// predefined combination Method static LikelinessType CombinedInputLikelinessCombinationMethodMult(LikelinessType A, LikelinessType B) { return A * B; } /// predefined combination Method static LikelinessType CombinedInputLikelinessCombinationMethodAverage(LikelinessType A, LikelinessType B) { return (A + B) / 2; } /// predefined combination method static LikelinessType OutputLikelinessCombinationMethodMin(LikelinessType A, LikelinessType B) { return std::min(A, B); } /// predefined combination method static LikelinessType OutputLikelinessCombinationMethodMax(LikelinessType A, LikelinessType B) { return std::max(A, B); } /// predefined combination method static LikelinessType OutputLikelinessCombinationMethodMult(LikelinessType A, LikelinessType B) { return A * B; } /// predefined combination method static LikelinessType OutputLikelinessCombinationMethodAverage(LikelinessType A, LikelinessType B) { return (A + B) / 2; } }; // ------------------------------------------------------------------------- // Cleanup // ------------------------------------------------------------------------- ~CrossCombinator() { Functions.clear(); } // -------------------------------------------------------------------------- // Parameters // -------------------------------------------------------------------------- private: struct Functionblock { bool exists = false; id_t A; id_t B; std::shared_ptr Funct; }; std::map> Identifiers; /// From Maxi in his code defined as 1 can be changed by set LikelinessType crossLikelinessParameter = 1; /// Stored Cross Likeliness Functions std::vector Functions; /// Method which is used to combine the generated values std::function)> Method = predefinedMethods::AVERAGE; std::function LikelinessCombinationMethod = predefinedMethods::LikelinessCombinationMethodMin; std::function CombinedInputLikelinessCombinationMethod = predefinedMethods::CombinedInputLikelinessCombinationMethodMin; std::function OutputLikelinessCombinationMethod = predefinedMethods::OutputLikelinessCombinationMethodMin; //-------------------------------------------------------------------------------- // helper function /// very inefficient searchFunction Functionblock (*searchFunction)(std::vector vect, const id_t nameA, const id_t nameB) = [](std::vector vect, const id_t nameA, const id_t nameB) -> Functionblock { for (Functionblock tmp : vect) { if (tmp.A == nameA && tmp.B == nameB) return tmp; if (tmp.A == nameB && tmp.B == nameA) return tmp; } return Functionblock(); }; /// evaluates the corresponding LinearFunction with the Identifier difference /// \param nameA these two parameters are the unique Identifiers /// \param nameB these two parameters are the unique Identifiers /// for the LinerFunction /// /// \note it doesn't matter if they are swapped LikelinessType getCrossLikelinessFromProfile( const id_t &nameA, const id_t &nameB, const IdentifierType &IdentifierDifference) noexcept { Functionblock block = searchFunction(Functions, nameA, nameB); if (!block.exists) { LOG_ERROR(("CrossLikeliness: Block:" + std::to_string(nameA) + "," + std::to_string(nameB) + "doesn't exist returning 0")); return 0; } return block.Funct->operator()(IdentifierDifference); } }; } // End namespace agent } // End namespace rosa -#endif // ROSA_AGENT_CROSSCOMBINATOR_H \ No newline at end of file +#endif // ROSA_AGENT_CROSSCOMBINATOR_H diff --git a/include/rosa/agent/ReliabilityConfidenceCombinator.h b/include/rosa/agent/ReliabilityConfidenceCombination.h similarity index 97% rename from include/rosa/agent/ReliabilityConfidenceCombinator.h rename to include/rosa/agent/ReliabilityConfidenceCombination.h index 734840a..7a5a4d9 100644 --- a/include/rosa/agent/ReliabilityConfidenceCombinator.h +++ b/include/rosa/agent/ReliabilityConfidenceCombination.h @@ -1,773 +1,773 @@ -//===-- rosa/agent/ReliabilityConfidenceCombinator.h ------------*- C++ -*-===// +//===-- rosa/agent/ReliabilityConfidenceCombination.h -----------*- C++ -*-===// // // The RoSA Framework // // Distributed under the terms and conditions of the Boost Software License 1.0. // See accompanying file LICENSE. // // If you did not receive a copy of the license file, see // http://www.boost.org/LICENSE_1_0.txt. // //===----------------------------------------------------------------------===// /// -/// \file rosa/agent/ReliabilityConfidenceCombinator.h +/// \file rosa/agent/ReliabilityConfidenceCombination.h /// /// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at) /// /// \date 2019 /// -/// \brief Definition of *ReliabilityConfidenceCombinator* *functionality*. +/// \brief Definition of *ReliabilityConfidenceCombination* *functionality*. /// /// \note based on Maximilian Goetzinger (maxgot@utu.fi) code in /// CAM_Dirty_include SA-EWS2_Version... inside Agent.cpp /// /// \note By defining and setting Reliability_trace_level it is possible to /// change the level to which it should be traced. \note All classes throw /// runtime errors if not all things are set /// /// \note should the Reliability be capped? /// /// //===----------------------------------------------------------------------===// -#ifndef ROSA_AGENT_ReliabilityConfidenceCombinator_H -#define ROSA_AGENT_ReliabilityConfidenceCombinator_H +#ifndef ROSA_AGENT_ReliabilityConfidenceCombination_H +#define ROSA_AGENT_ReliabilityConfidenceCombination_H #include "rosa/core/forward_declarations.h" // needed for id_t #include "rosa/support/log.h" #include "rosa/agent/FunctionAbstractions.hpp" #include "rosa/agent/Functionality.h" #include "rosa/agent/RangeConfidence.hpp" #include #include #include #include /// 0 everything /// 1 vectors /// 2 outputs #define trace_everything 0 #define trace_vectors 1 #define trace_outputs 2 #ifndef Reliability_trace_level #define Reliability_trace_level 0 #endif #define trace_end "\n\n\n" namespace rosa { namespace agent { /// This is a struct with a few methods that make Likeliness Combinator /// more readable \tparam IdentifierType The Data-type of the Identifiers /// \tparam LikelinessType The Data-type of the Likeliness \note this /// should/will be changed into a std::pair because it isn't needed anymore template struct Symbol { /// making both Template Arguments readable to make a few things easier using _IdentifierType = IdentifierType; /// making both Template Arguments readable to make a few things easier using _LikelinessType = LikelinessType; /// The actual place where the data is stored IdentifierType Identifier; /// The actual place where the data is stored LikelinessType Likeliness; Symbol(IdentifierType _Identifier, LikelinessType _Likeliness) : Identifier(_Identifier), Likeliness(_Likeliness) {} Symbol() = default; /// Pushes the Data in a Human readable form /// \param out The stream where it is written to /// \param c The struct itself friend std::ostream &operator<<(std::ostream &out, const Symbol &c) { out << "Identifier: " << c.Identifier << "\t Likeliness: " << c.Likeliness << " "; return out; } /// needed or it throws an clang diagnosic error using map = std::map; // needed or it throws an // clang diagnosic error /// Filles the vector with the data inside the map /// \param me The vector to be filled /// \param data The data wich is to be pushed into the vector friend std::vector &operator<<(std::vector &me, map &&data) { for (auto tmp : data) { me.push_back(Symbol(tmp.first, tmp.second)); #if Reliability_trace_level <= trace_everything LOG_TRACE_STREAM << "\n" << Symbol(tmp.first, tmp.second) << trace_end; #endif } return me; } /// This is to push the data inside a vector in a human readable way into the /// ostream \param out The ostream \param c The vector which is read friend std::ostream &operator<<(std::ostream &out, const std::vector &c) { std::size_t index = 0; for (Symbol data : c) { out << index << " : " << data << "\n"; index++; } return out; } }; /// This is the combinator for Reliability and confidences it takes the /// Value, its "History" and feedback from \c /// CrossCombinator to calculate different Reliabilities. /// \tparam ValueType Data-type of the Value ( Typically /// double or float) \tparam IdentifierType Data-type of the Identifier ( /// Typically long or int) /// \tparam ReliabilityType Data-type of the Reliability ( /// Typically double or float) /// /// \note more information about how it calculates /// the Reliabilities it should be considered feedback is a sort of Confidence /// \verbatim ///---------------------------------------------------------------------------------- /// /// /// ->AbsoluteReliabilityFunction---> getInputReliability() /// | | /// | V /// Sensor Value ---| ReliabilityAndConfidenceCombinator -> next line /// | A | /// | | V /// ->ConfidenceFunction /// getPossibleIdentifiers() /// ///----------------------------------------------------------------------------------- /// /// feedback /// | /// V /// FeedbackSymbols /// | -> History -------| /// V | V /// here -> LikelinessFeedbackCombinator /// ------>LikelinessHistoryCombinator->next line /// | | /// V V /// getpossibleIdentifiersWithMasterFeedback() SymbolsWithHistory() /// ///---------------------------------------------------------------------------------- /// /// here -> sort -> most likely -> bestSymbol() /// ///--------------------------------------------------------------------------------- /// \endverbatim /// the mentioned methods are early outs so if two ore more of them are run in /// the same step they will be interpreted as different time steps ///
 /// Default values for Combinators:
 ///	AbsoluteAndSlopeReliabilityCombinationMethod		=
 /// combinationMin;
 ///	ReliabilityAndConfidenceCombinator=ReliabilityAndConfidenceCombinatorMin;
 /// LikelinessFeedbackCombinator		=
 /// LikelinessFeedbackCombinatorAverage; LikelinessHistoryCombinator
 /// = LikelinessHistoryCombinatorMax;
 ///	
/// To understand the place where the combinator methods come into play a list /// for each early exit and which Methods are used. /// ///
 /// \c getInputReliability():
 ///		-AbsoluteAndSlopeReliabilityCombinationMethod
 /// \c getPossibleIdentifiers():
 ///		-AbsoluteAndSlopeReliabilityCombinationMethod
 ///		-ReliabilityAndConfidenceCombinator
 /// \c getpossibleIdentifiersWithMasterFeedback():
 ///		-AbsoluteAndSlopeReliabilityCombinationMethod
 ///		-ReliabilityAndConfidenceCombinator
 ///		-LikelinessFeedbackCombinator
 /// \c SymbolsWithHistory():
 ///		-AbsoluteAndSlopeReliabilityCombinationMethod
 ///		-ReliabilityAndConfidenceCombinator
 ///		-LikelinessFeedbackCombinator
 ///		-LikelinessHistoryCombinator
 /// \c bestSymbol():
 ///		-AbsoluteAndSlopeReliabilityCombinationMethod
 ///		-ReliabilityAndConfidenceCombinator
 ///		-LikelinessFeedbackCombinator
 ///		-LikelinessHistoryCombinator
 /// 
template -class ReliabilityAndConfidenceCombinator { +class ReliabilityAndConfidenceCombination { public: static_assert(std::is_arithmetic::value, "LowLevel: ValueType has to an arithmetic type\n"); static_assert(std::is_arithmetic::value, "LowLevel: IdentifierType has to an arithmetic type\n"); static_assert(std::is_arithmetic::value, "LowLevel: ReliabilityType has to an arithmetic type\n"); /// Typedef to shorten the writing. /// \c Symbol using Symbol = Symbol; /// Calculates the input Reliability by combining Reliability of the Sensor /// and the Slope Reliability \param SensorValue The sensor Value \note to set /// the combination method \c /// setAbsoluteAndSlopeReliabilityCombinationMethod() ReliabilityType getInputReliability(const ValueType &SensorValue) noexcept { ReliabilityType inputReliability = getReliability(SensorValue, previousSensorValue, timeStep); previousSensorValue = SensorValue; PreviousSensorValueExists = true; return inputReliability; } /// Calculates the possible Identifiers /// \param SensorValue the Sensor Value /// \brief it combines the input reliability and the confidence of the Sensor. /// The use combination method can be set using \c /// setReliabilityAndConfidenceCombinator() std::vector getPossibleIdentifiers(const ValueType &SensorValue) noexcept { std::vector possibleIdentifiers; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleIdentifiers << ConfidenceFunction->operator()(SensorValue); possibleIdentifiers = ReliabilityAndConfidenceCombinator( possibleIdentifiers, inputReliability); return possibleIdentifiers; } /// return the Possible Values with the feedback in mind /// \param SensorValue The sensor Value /// \brief it combines the input reliability and the confidence of the Sensor. /// The combines them with LikelinessFeedbackCombinator and returns the /// result. std::vector getpossibleIdentifiersWithMasterFeedback( const ValueType &SensorValue) noexcept { std::vector possibleIdentifiers; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleIdentifiers << ConfidenceFunction->operator()(SensorValue); possibleIdentifiers = ReliabilityAndConfidenceCombinator( possibleIdentifiers, inputReliability); possibleIdentifiers = LikelinessFeedbackCombinator(possibleIdentifiers, FeedbackSymbols); return possibleIdentifiers; } /// returns all possible Identifiers and Reliabilities with the History in /// mind \param SensorValue the Sensor value how this is done is described at /// the class. std::vector SymbolsWithHistory(const ValueType &SensorValue) noexcept { std::vector ActuallPossibleIdentifiers; std::vector possibleIdentifiers; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleIdentifiers << ConfidenceFunction->operator()(SensorValue); possibleIdentifiers = ReliabilityAndConfidenceCombinator( possibleIdentifiers, inputReliability); possibleIdentifiers = LikelinessFeedbackCombinator(possibleIdentifiers, FeedbackSymbols); saveInHistory(possibleIdentifiers); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n" << possibleIdentifiers << trace_end; LOG_TRACE_STREAM << "\npossibleIdentifiers:\n" << possibleIdentifiers << trace_end; #endif possibleIdentifiers.clear(); return SymbolsFromHistory(); } /// Calculates the Reliability /// \param SensorValue The current Values of the Sensor /// /// \return Reliability and Identifier of the current SensorValue /// Symbol bestSymbol(const ValueType &SensorValue) noexcept { #if Reliability_trace_level <= trace_outputs LOG_TRACE_STREAM << "\nTrace level is set to: " << Reliability_trace_level << "\n" << "Will trace: " << ((Reliability_trace_level == trace_outputs) ? "outputs" : (Reliability_trace_level == trace_vectors) ? "vectors" : (Reliability_trace_level == trace_everything) ? "everything" : "undefined") << trace_end; #endif std::vector ActuallPossibleIdentifiers; std::vector possibleIdentifiers; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleIdentifiers << ConfidenceFunction->operator()(SensorValue); possibleIdentifiers = ReliabilityAndConfidenceCombinator( possibleIdentifiers, inputReliability); possibleIdentifiers = LikelinessFeedbackCombinator(possibleIdentifiers, FeedbackSymbols); saveInHistory(possibleIdentifiers); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n" << possibleIdentifiers << trace_end; LOG_TRACE_STREAM << "\npossibleIdentifiers:\n" << possibleIdentifiers << trace_end; #endif possibleIdentifiers.clear(); possibleIdentifiers = SymbolsFromHistory(); std::sort( possibleIdentifiers.begin(), possibleIdentifiers.end(), [](Symbol A, Symbol B) -> bool { return A.Likeliness > B.Likeliness; }); #if Reliability_trace_level <= trace_outputs LOG_TRACE_STREAM << "\noutput lowlevel: " << possibleIdentifiers.at(0) << trace_end; #endif return possibleIdentifiers.at(0); } /// feedback for this functionality most commonly it comes from a Master Agent /// \param _FeedbackSymbols The Identifiers + Reliability for the feedback /// \brief This input kind of resembles a confidence but not /// directly it more or less says: compared to the other Identifiers inside /// the System these are the Identifiers with the Reliability that you have. void feedback( const std::vector &_FeedbackSymbols) noexcept // it is being copied internally anyway { FeedbackSymbols = _FeedbackSymbols; } // // ----------------------Reliability and Confidence Function setters---------- // /// This is the setter for Confidence Function /// \param _ConfidenceFunction A pointer to the Functional for the /// \c Confidence of the Sensor value void setConfidenceFunction( std::shared_ptr< RangeConfidence> &_ConfidenceFunction) noexcept { ConfidenceFunction = _ConfidenceFunction; } /// This is the setter for AbsoluteReliabilityFunction /// \param _AbsoluteReliabilityFunction A pointer to the Functional for the /// AbsoluteReliabilityFunction \brief The AbsoluteReliabilityFunction takes /// the current Sensor value and return the AbsoluteReliabilityFunction of the /// value. void setAbsoluteReliabilityFunction( std::shared_ptr> &_AbsoluteReliabilityFunction) noexcept { AbsoluteReliabilityFunction = _AbsoluteReliabilityFunction; } /// This is the setter for ReliabilitySlopeFunction Function /// \param _ReliabilitySlopeFunction A pointer to the Functional for the /// ReliabilitySlopeFunction /// \brief The ReliabilitySlopeFunction takes the difference of the current /// Sensor Value to the last one and tells you how likely the change is. void setReliabilitySlopeFunction( std::shared_ptr> &_ReliabilitySlopeFunction) noexcept { ReliabilitySlopeFunction = _ReliabilitySlopeFunction; } /// This is the setter for TimeFunctionForLikeliness Function /// \param _TimeFunctionForLikeliness A pointer to the Functional for the /// TimeFunctionForLikeliness \brief The time function takes the position in /// the History with greater equals older and return a Reliability of how /// "relevant" it is. void setTimeFunctionForLikelinessFunction( std::shared_ptr> &_TimeFunctionForLikeliness) noexcept { TimeFunctionForLikeliness = _TimeFunctionForLikeliness; } /// This is the setter for all possible Identifiers - /// \param Identifiers A vector containing all Identifiers + /// \param _Identifiers A vector containing all Identifiers /// \brief This exists even though \c Identifier Type is an arithmetic Type /// because the Identifiers do not need to be "next" to each other ( ex. /// Identifiers={ 1 7 24 }) - void setIdentifiers(const std::vector &Identifiers) noexcept { - this->Identifiers = Identifiers; + void setIdentifiers(const std::vector &_Identifiers) noexcept { + this->Identifiers = _Identifiers; } /// This sets the Maximum length of the History /// \param length The length void setHistoryLength(const std::size_t &length) noexcept { this->HistoryMaxSize = length; } /// This sets the Value set Counter - /// \param timeStep the new Value + /// \param _timeStep the new Value /// \note This might actually be only an artifact. It is only used to get the /// reliability from the \c ReliabilitySlopeFunction [ /// ReliabilitySlopeFunction->operator()( (lastValue - actualValue) / /// (ValueType)timeStep) ] - void setTimeStep(const unsigned int &timeStep) noexcept { - this->timeStep = timeStep; + void setTimeStep(const unsigned int &_timeStep) noexcept { + this->timeStep = _timeStep; } // // ----------------combinator setters----------------------------------------- // /// This sets the combination method used by the History /// \param Meth the method which should be used. predefined inside the \c /// predefinedMethods struct LikelinessHistoryCombinator() void setLikelinessHistoryCombinator( const std::function &Meth) noexcept { LikelinessHistoryCombinator = Meth; } /// sets the predefined method for the combination of the possible Identifiers /// and the master /// \param Meth the method which should be used. predefined inside the \c /// predefinedMethods struct LikelinessFeedbackCombinator() void setLikelinessFeedbackCombinator( const std::function( std::vector, std::vector)> &Meth) noexcept { LikelinessFeedbackCombinator = Meth; } /// Sets the used combination method for Possible Identifiers /// \param Meth the method which should be used. predefined inside the \c /// predefinedMethods struct setReliabilityAndConfidenceCombinator() void setReliabilityAndConfidenceCombinator( const std::function( std::vector, ReliabilityType)> &Meth) noexcept { ReliabilityAndConfidenceCombinator = Meth; } /// sets the input reliability combinator method /// \param method the method which should be used. predefined inside the \c /// predefinedMethods struct combination() void setAbsoluteAndSlopeReliabilityCombinationMethod( const std::function &&method) noexcept { AbsoluteAndSlopeReliabilityCombinationMethod = method; } // // ----------------predefined combinators------------------------------------ // /// This struct is a pseudo name space to have easier access to all predefined /// methods while still not overcrowding the class it self struct predefinedMethods { /// predefined Method static ReliabilityType LikelinessHistoryCombinatorMin(ReliabilityType A, ReliabilityType B) noexcept { return std::min(A, B); } /// predefined Method static ReliabilityType LikelinessHistoryCombinatorMax(ReliabilityType A, ReliabilityType B) noexcept { return std::max(A, B); } /// predefined Method static ReliabilityType LikelinessHistoryCombinatorMult(ReliabilityType A, ReliabilityType B) noexcept { return A * B; } /// predefined Method static ReliabilityType LikelinessHistoryCombinatorAverage(ReliabilityType A, ReliabilityType B) noexcept { return (A + B) / 2; } /// predefined method static std::vector LikelinessFeedbackCombinatorAverage(std::vector A, std::vector B) noexcept { for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Likeliness = (tmp_me.Likeliness + tmp_other.Likeliness) / 2; } } return A; } /// predefined method static std::vector LikelinessFeedbackCombinatorMin(std::vector A, std::vector B) noexcept { for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Likeliness = std::min(tmp_me.Likeliness + tmp_other.Likeliness); } } return A; } /// predefined method static std::vector LikelinessFeedbackCombinatorMax(std::vector A, std::vector B) noexcept { for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Likeliness = std::max(tmp_me.Likeliness + tmp_other.Likeliness); } } return A; } /// predefined method static std::vector LikelinessFeedbackCombinatorMult(std::vector A, std::vector B) noexcept { for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Likeliness = tmp_me.Likeliness * tmp_other.Likeliness; } } return A; } /// Predefined combination method for possible Identifiers static std::vector ReliabilityAndConfidenceCombinatorMin(std::vector A, ReliabilityType B) noexcept { for (auto tmp : A) tmp.Likeliness = std::min(tmp.Likeliness, B); return A; } /// Predefined combination method for possible Identifiers static std::vector ReliabilityAndConfidenceCombinatorMax(std::vector A, ReliabilityType B) noexcept { for (auto tmp : A) tmp.Likeliness = std::max(tmp.Likeliness, B); return A; } /// Predefined combination method for possible Identifiers static std::vector ReliabilityAndConfidenceCombinatorAverage(std::vector A, ReliabilityType B) noexcept { for (auto tmp : A) tmp.Likeliness = (tmp.Likeliness + B) / 2; return A; } /// Predefined combination method for possible Identifiers static std::vector ReliabilityAndConfidenceCombinatorMult(std::vector A, ReliabilityType B) noexcept { for (auto tmp : A) tmp.Likeliness = tmp.Likeliness * B / 2; return A; } /// The predefined min combinator method static ReliabilityType combinationMin(ReliabilityType A, ReliabilityType B) noexcept { return std::min(A, B); } /// The predefined max combinator method static ReliabilityType combinationMax(ReliabilityType A, ReliabilityType B) noexcept { return std::max(A, B); } /// The predefined average combinator method static ReliabilityType combinationAverage(ReliabilityType A, ReliabilityType B) noexcept { return (A + B) / 2; } /// The predefined average combinator method static ReliabilityType combinationMult(ReliabilityType A, ReliabilityType B) noexcept { return A * B; } }; // ---------------------------------------------------------------- // Stored Values // ---------------------------------------------------------------- private: std::vector> History; std::size_t HistoryMaxSize; std::vector FeedbackSymbols; ValueType previousSensorValue; unsigned int timeStep; std::vector Identifiers; bool PreviousSensorValueExists = false; std::shared_ptr> ConfidenceFunction; std::shared_ptr> AbsoluteReliabilityFunction; std::shared_ptr> ReliabilitySlopeFunction; std::shared_ptr> TimeFunctionForLikeliness; // combination functions std::function AbsoluteAndSlopeReliabilityCombinationMethod = predefinedMethods::combinationMin; std::function(std::vector, ReliabilityType)> ReliabilityAndConfidenceCombinator = predefinedMethods::ReliabilityAndConfidenceCombinatorMin; std::function(std::vector, std::vector)> LikelinessFeedbackCombinator = predefinedMethods::LikelinessFeedbackCombinatorAverage; std::function LikelinessHistoryCombinator = predefinedMethods::LikelinessHistoryCombinatorMax; // --------------------------------------------------------------------------- // needed Functions // --------------------------------------------------------------------------- /// returns the Reliability /// \param actualValue The Value of the Sensor /// \param lastValue of the Sensor this is stored in the class /// \param _timeStep It has an effect on the difference of the current /// and last value This might not be needed anymore /// \brief it returns the combination the \c Reliability function and \c /// ReliabilitySlopeFunction if the previous value exists. if it doesn't it /// only returns the \c Reliability function value. ReliabilityType getReliability(const ValueType &actualValue, const ValueType &lastValue, const unsigned int &_timeStep) noexcept { ReliabilityType relAbs = AbsoluteReliabilityFunction->operator()(actualValue); if (PreviousSensorValueExists) { ReliabilityType relSlo = ReliabilitySlopeFunction->operator()( (lastValue - actualValue) / static_cast(_timeStep)); // return AbsoluteAndSlopeReliabilityCombinationMethod(relAbs, relSlo); } else return relAbs; } /// adapts the possible Identifiers by checking the History and combines those /// values. /// \brief combines the historic values with the \c TimeFunctionForLikeliness /// function and returns the maximum Reliability for all Identifiers. std::vector SymbolsFromHistory() noexcept { // iterate through all history entries std::size_t posInHistory = 0; std::vector symbolFromHistory; // History Symbols - for (auto timeStep = History.begin(); timeStep < History.end(); - timeStep++, posInHistory++) { + for (auto step = History.begin(); step < History.end(); + step++, posInHistory++) { // iterate through all possible Identifiers of each history entry - for (Symbol &symbol : *timeStep) { + for (Symbol &symbol : *step) { IdentifierType historyIdentifier = symbol.Identifier; ReliabilityType historyConf = symbol.Likeliness; historyConf = historyConf * TimeFunctionForLikeliness->operator()(posInHistory); bool foundIdentifier = false; for (Symbol &pS : symbolFromHistory) { if (pS.Identifier == historyIdentifier) { pS.Likeliness = LikelinessHistoryCombinator(pS.Likeliness, historyConf); foundIdentifier = true; } } if (foundIdentifier == false) { Symbol possibleIdentifier; // Symbol possibleIdentifier.Identifier = historyIdentifier; possibleIdentifier.Likeliness = historyConf; symbolFromHistory.push_back(possibleIdentifier); } } } return symbolFromHistory; } /// saves the Identifiers in the History /// \brief It checks the incoming Identifiers if any have a Reliability /// greater than 0.5 all of them get saved inside the History and then the /// History get shortened to the maximal length. It only saves the Value if /// the History is empty. /// /// \param actualPossibleIdentifiers The Identifiers which should be saved /// /// \note Does the History really make sense if the values are to small it /// only stores something if it's empty and not if it isn't completely filled void saveInHistory(const std::vector &actualPossibleIdentifiers) noexcept { // Symbols // check if the reliability of at least one possible Identifier is high // enough bool atLeastOneRelIsHigh = false; for (Symbol pS : actualPossibleIdentifiers) { if (pS.Likeliness > 0.5) { atLeastOneRelIsHigh = true; } } // save possible Identifiers if at least one possible Identifier is high // enough (or if the history is empty) if (History.size() < 1 || atLeastOneRelIsHigh == true) { History.insert(History.begin(), actualPossibleIdentifiers); // if history size is higher than allowed, save oldest element while (History.size() > HistoryMaxSize) { // delete possibleIdentifierHistory.back(); History.pop_back(); } } } }; } // namespace agent } // namespace rosa -#endif // !ROSA_AGENT_ReliabilityConfidenceCombinator_H +#endif // !ROSA_AGENT_ReliabilityConfidenceCombination_H diff --git a/lib/agent/CMakeLists.txt b/lib/agent/CMakeLists.txt index 537b6dc..39d0c35 100644 --- a/lib/agent/CMakeLists.txt +++ b/lib/agent/CMakeLists.txt @@ -1,34 +1,34 @@ set(LIB_INCLUDE_DIR ${ROSA_MAIN_INCLUDE_DIR}/rosa/agent) add_library(ROSAAgent ${LIB_INCLUDE_DIR}/namespace.h namespace.cpp ${LIB_INCLUDE_DIR}/Functionality.h Functionality.cpp ${LIB_INCLUDE_DIR}/Abstraction.hpp Abstraction.cpp ${LIB_INCLUDE_DIR}/FunctionAbstractions.hpp FunctionAbstractions.cpp ${LIB_INCLUDE_DIR}/RangeConfidence.hpp RangeConfidence.cpp ${LIB_INCLUDE_DIR}/History.hpp History.cpp ${LIB_INCLUDE_DIR}/Confidence.hpp Confidence.cpp ${LIB_INCLUDE_DIR}/CrossCombinator.h CrossCombinator.cpp - ${LIB_INCLUDE_DIR}/ReliabilityConfidenceCombinator.h - ReliabilityConfidenceCombinator.cpp + ${LIB_INCLUDE_DIR}/ReliabilityConfidenceCombination.h + ReliabilityConfidenceCombination.cpp ${LIB_INCLUDE_DIR}/SignalState.hpp SignalState.cpp ${LIB_INCLUDE_DIR}/SignalStateDetector.hpp SignalStateDetector.cpp ${LIB_INCLUDE_DIR}/State.hpp State.cpp ${LIB_INCLUDE_DIR}/StateDetector.hpp StateDetector.cpp ${LIB_INCLUDE_DIR}/SystemState.hpp SystemState.cpp ${LIB_INCLUDE_DIR}/SystemStateDetector.hpp SystemStateDetector.cpp ) diff --git a/lib/agent/ReliabilityConfidenceCombinator.cpp b/lib/agent/ReliabilityConfidenceCombination.cpp similarity index 73% rename from lib/agent/ReliabilityConfidenceCombinator.cpp rename to lib/agent/ReliabilityConfidenceCombination.cpp index ca5daa9..026418b 100644 --- a/lib/agent/ReliabilityConfidenceCombinator.cpp +++ b/lib/agent/ReliabilityConfidenceCombination.cpp @@ -1,26 +1,26 @@ -//===-- agent/Reliability.cpp -----------------------------------*- C++ -*-===// +//===-- agent/ReliabilityConfidenceCombination.cpp --------------*- C++ -*-===// // // The RoSA Framework // // Distributed under the terms and conditions of the Boost Software License 1.0. // See accompanying file LICENSE. // // If you did not receive a copy of the license file, see // http://www.boost.org/LICENSE_1_0.txt. // //===----------------------------------------------------------------------===// /// -/// \file agent/ReliabilityConfidenceCombinator.cpp +/// \file agent/ReliabilityConfidenceCombination.cpp /// /// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at) /// /// \date 2019 /// -/// \brief Implementation for rosa/agent/ReliabilityConfidenceCombinator.h +/// \brief Implementation for rosa/agent/ReliabilityConfidenceCombinatoion.h /// /// \note Empty implementation, source file here to have a compile database -/// entry for rosa/agent/ReliabilityConfidenceCombinator.h +/// entry for rosa/agent/ReliabilityConfidenceCombination.h /// //===----------------------------------------------------------------------===// -#include "rosa/agent/ReliabilityConfidenceCombinator.h" +#include "rosa/agent/ReliabilityConfidenceCombination.h"