diff --git a/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp b/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp index 93aba31..9d6ddd3 100644 --- a/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp +++ b/examples/agent-functionalities/Reliability-functionality/Reliability-functionality.cpp @@ -1,247 +1,247 @@ //===- examples/agent-functionalities/Reliability-functionality.cpp *C++-*-===// // // The RoSA Framework // //===----------------------------------------------------------------------===// /// /// \file examples/agent-functionalities/Reliability-functionality.cpp /// /// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at ) /// /// \date 2019 /// /// \brief A simple example on defining Relianility Functionalities. /// //===----------------------------------------------------------------------===// #define Reliability_trace_level 5 #include "rosa/config/version.h" #include "rosa/support/log.h" #include "rosa/agent/CrossCombinator.h" #include "rosa/agent/RangeConfidence.hpp" #include "rosa/agent/ReliabilityConfidenceCombinator.h" #include #include using namespace rosa::agent; int main(void) { typedef double SensorValueType; typedef long StateType; typedef double ReliabilityType; std::unique_ptr> Confidence(new RangeConfidence( {{0, PartialFunction( { {{0, 3}, std::make_shared>( 0, 1.0 / 3)}, {{3, 6}, std::make_shared>(1, 0)}, {{6, 9}, std::make_shared>( 3.0, -1.0 / 3)}, }, 0)}, {1, PartialFunction( { {{6, 9}, std::make_shared>( -2, 1.0 / 3)}, {{9, 12}, std::make_shared>(1, 0)}, {{12, 15}, std::make_shared>( 5, -1.0 / 3)}, }, 0)}, {2, PartialFunction( { {{12, 15}, std::make_shared>( -4, 1.0 / 3)}, {{15, 18}, std::make_shared>(1, 0)}, {{18, 21}, std::make_shared>( 7, -1.0 / 3)}, }, 0)}})); std::unique_ptr> Reliability( new LinearFunction(1, -1.0 / 3)); std::unique_ptr> ReliabilitySlope( new LinearFunction(1, -1.0 / 3)); std::unique_ptr> TimeConfidence( new LinearFunction(1, -1.0 / 3)); auto lowlevel = new ReliabilityAndConfidenceCombinator(); std::vector states; states.push_back(0); states.push_back(1); states.push_back(2); lowlevel->setConfidenceFunction(Confidence); lowlevel->setReliabilityFunction(Reliability); lowlevel->setReliabilitySlopeFunction(ReliabilitySlope); lowlevel->setTimeConfidenceFunction(TimeConfidence); lowlevel->setStates(states); lowlevel->setHistoryLength(2); lowlevel->setValueSetCounter(1); /* ----------------------------- Do Something * ---------------------------------------------------------------- */ std::cout << "Testing the lowlevel component with static feedback telling it " "that the most lickely state is 2.\n"; for (int a = 0; a < 30; a++) std::cout << "a: " << a << "\n" << (lowlevel->feedback({{0, 0}, {1, 0.3}, {2, 0.8}}), - lowlevel->mostLikelyIdentifierAndReliability(a)) + lowlevel->getmostLikelyIdentifierAndReliability(a)) << "\n"; std::cout << "---------------------------------------------------------------" "---------------------------------\n"; std::cout << "------------------------------------High level " "Test---------------------------------------------\n"; std::cout << "Configured in a way that the Master thinks that both Sensors " "should have the same State.\n While feeding both the \"opposite\" " "values one acending the other decending from the maximum.\n"; std::unique_ptr> Confidence2(new RangeConfidence( {{0, PartialFunction( { {{0, 3}, std::make_shared>( 0, 1.0 / 3)}, {{3, 6}, std::make_shared>(1, 0)}, {{6, 9}, std::make_shared>( 3.0, -1.0 / 3)}, }, 0)}, {1, PartialFunction( { {{6, 9}, std::make_shared>( -2, 1.0 / 3)}, {{9, 12}, std::make_shared>(1, 0)}, {{12, 15}, std::make_shared>( 5, -1.0 / 3)}, }, 0)}, {2, PartialFunction( { {{12, 15}, std::make_shared>( -4, 1.0 / 3)}, {{15, 18}, std::make_shared>(1, 0)}, {{18, 21}, std::make_shared>( 7, -1.0 / 3)}, }, 0)}})); std::unique_ptr> Reliability2( new LinearFunction(1, -1.0 / 9)); std::unique_ptr> ReliabilitySlope2( new LinearFunction(1, -1.0 / 9)); std::unique_ptr> TimeConfidence2( new LinearFunction(1, -1.0 / 9)); auto lowlevel2 = new ReliabilityAndConfidenceCombinator(); std::vector states2; states2.push_back(0); states2.push_back(1); states2.push_back(2); lowlevel2->setConfidenceFunction(Confidence2); lowlevel2->setReliabilityFunction(Reliability2); lowlevel2->setReliabilitySlopeFunction(ReliabilitySlope2); lowlevel2->setTimeConfidenceFunction(TimeConfidence2); lowlevel2->setStates(states2); lowlevel2->setHistoryLength(2); lowlevel2->setValueSetCounter(1); CrossCombinator *highlevel = new CrossCombinator(); std::unique_ptr> func1(new PartialFunction( { {{0, 1}, std::make_shared>(1, 0)}, {{1, 2}, std::make_shared>(2, -1.0)}, }, 0)); highlevel->addCrossReliabilityProfile(0, 1, func1); highlevel->setCrossReliabilityCombinatorMethod( CrossCombinator::AVERAGE); highlevel->setCrossReliabilityParameter(1); highlevel->addStates(0, states); highlevel->addStates(1, states); for (int a = 0; a < 21; a++) { - auto out1 = lowlevel->mostLikelyIdentifierAndReliability(a), - out2 = lowlevel2->mostLikelyIdentifierAndReliability((int)21 - a); + auto out1 = lowlevel->getmostLikelyIdentifierAndReliability(a), + out2 = lowlevel2->getmostLikelyIdentifierAndReliability((int)21 - a); std::cout << "s1: " << out1 << "\ns2:" << out2 << "\n"; std::vector> tmp2; tmp2.push_back({0, out1.Identifier, out1.Reliability}); tmp2.push_back({1, out2.Identifier, out2.Reliability}); auto out_o = highlevel->operator()(tmp2); std::cout << "it: " << a << "\t rel: " << out_o.CrossReliability << "\n"; std::cout << "\t subs:\n"; for (auto q : out_o.CrossConfidence) { std::cout << "\t\t id:" << q.first << "\n"; /* for(auto z: q.second) { std::cout << "\t\t\t Identifier: " << z.Identifier << "\tRel: " << z.Reliability << "\n"; tmp.push_back({z.Identifier,z.Reliability}); } */ for (auto z : q.second) { std::cout << "\t\t\t Identifier: " << z.Identifier << "\tRel: " << z.Reliability << "\n"; } if (q.first == 0) lowlevel->feedback(q.second); else lowlevel2->feedback(q.second); } } /* ----------------------------- Cleanup * --------------------------------------------------------------------- */ delete highlevel; delete lowlevel; delete lowlevel2; } \ No newline at end of file diff --git a/include/rosa/agent/ReliabilityConfidenceCombinator.h b/include/rosa/agent/ReliabilityConfidenceCombinator.h index 1efb7dd..901a12e 100644 --- a/include/rosa/agent/ReliabilityConfidenceCombinator.h +++ b/include/rosa/agent/ReliabilityConfidenceCombinator.h @@ -1,758 +1,804 @@ //===-- rosa/agent/ReliabilityConfidenceCombinator.h ------------*- C++ -*-===// // // The RoSA Framework // //===----------------------------------------------------------------------===// /// /// \file rosa/agent/ReliabilityConfidenceCombinator.h /// /// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at) /// /// \date 2019 /// /// \brief Definition of *ReliabilityConfidenceCombinator* *functionality*. /// /// \note based on Maximilian Goetzinger (maxgot@utu.fi) code in /// CAM_Dirty_include SA-EWS2_Version... inside Agent.cpp /// /// \note By defining and setting Reliability_trace_level it is possible to /// change the level to which it should be traced. \note All classes throw /// runtime errors if not all things are set /// /// \note should the Reliability be capped? /// /// //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_ReliabilityConfidenceCombinator_H #define ROSA_AGENT_ReliabilityConfidenceCombinator_H #include "rosa/core/forward_declarations.h" // needed for id_t #include "rosa/support/log.h" #include "rosa/agent/FunctionAbstractions.hpp" #include "rosa/agent/Functionality.h" #include "rosa/agent/RangeConfidence.hpp" #include #include #include /// 0 everything /// 1 vectors /// 2 outputs #define trace_everything 0 #define trace_vectors 1 #define trace_outputs 2 #ifndef Reliability_trace_level #define Reliability_trace_level 0 #endif #define trace_end "\n\n\n" namespace rosa { namespace agent { /// This is a struct with a few methods that make Reliability Combinator /// more readable \tparam IdentifierType The datatype of the States \tparam /// ReliabilityType The datatype of the Reliability template struct ConfOrRel { /// making both Template Arguments readable to make a few things easier using _IdentifierType = IdentifierType; /// making both Template Arguments readable to make a few things easier using _ReliabilityType = ReliabilityType; /// The actual place where the data is stored IdentifierType Identifier; /// The actual place where the data is stored ReliabilityType Reliability; ConfOrRel(IdentifierType _Identifier, ReliabilityType _Reliability) : Identifier(_Identifier), Reliability(_Reliability){}; ConfOrRel(){}; /// Pushes the Data in a Human readable form /// \param out The stream where it is written to /// \param c The struct itself friend std::ostream &operator<<(std::ostream &out, const ConfOrRel &c) { - out << "Identifier: " << c.Identifier << "\t Reliability: " << c.Reliability << " "; + out << "Identifier: " << c.Identifier << "\t Reliability: " << c.Reliability + << " "; return out; } /// needed or it throws an clang diagnosic error - using map = std::map; // needed or it throws an - // clang diagnosic error + using map = + std::map; // needed or it throws an + // clang diagnosic error /// Filles the vector with the data inside the map /// \param me The vector to be filled /// \param data The data wich is to be pushed into the vector friend std::vector &operator<<(std::vector &me, map &&data) { for (auto tmp : data) { me.push_back(ConfOrRel(tmp.first, tmp.second)); #if Reliability_trace_level <= trace_everything LOG_TRACE_STREAM << "\n" << ConfOrRel(tmp.first, tmp.second) << trace_end; #endif } return me; } /// This is to push the data inside a vector in a human readable way into the /// ostream \param out The ostream \param c The vector which is read friend std::ostream &operator<<(std::ostream &out, const std::vector &c) { std::size_t index = 0; for (ConfOrRel data : c) { out << index << " : " << data << "\n"; index++; } return out; } }; /// This calculates the minimum of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector min(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = std::min(tmp.Reliability, value); return me; } /// This calculates the maximum of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector max(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = std::max(tmp.Reliability, value); return me; } /// This calculates the average of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector average(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = (tmp.Reliability + value) / 2; return me; } /// This calculates the average of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector mult(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = tmp.Reliability * value / 2; return me; } /// This average's the Reliabilities of the same Identifiers template std::vector average(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Reliability = (tmp_me.Reliability + tmp_other.Reliability) / 2; } } return A; } /// This min's the Reliabilities of the same Identifiers template std::vector min(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Reliability = std::min(tmp_me.Reliability + tmp_other.Reliability); } } return A; } /// This max's the Reliabilities of the same Identifiers template std::vector max(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Reliability = std::max(tmp_me.Reliability + tmp_other.Reliability); } } return A; } /// This mult's the Reliabilities of the same Identifiers template std::vector mult(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Reliability = tmp_me.Reliability * tmp_other.Reliability; } } return A; } /// This is the combinator for Reliability and confidences it takes the /// Sensor value, its "History" and feedback from \c /// CrossCombinator to calculate different Reliabilities. /// \tparam SensorValueType Datatype of the Sensor value ( Typically -/// double or float) \tparam IdentifierType Datatype of the State ( Typically long or -/// int) +/// double or float) \tparam IdentifierType Datatype of the State ( Typically +/// long or int) /// \tparam ReliabilityType Datatype of the Reliability ( /// Typically double or float) /// /// \note more information about how it calculates -/// the Reliabilities +/// the Reliabilities it should be considered feedback is a sort of Confidence /// \verbatim ///---------------------------------------------------------------------------------- /// /// /// ->Reliability---> getInputReliability() /// | | /// | V -/// Sensor Value ---| PossibleIdentifierCombinationMethod -> next line +/// Sensor Value ---| PossibleIdentifierCombinationMethod -> next line /// | A | /// | | V /// ->Confidence--- getPossibleIdentifiers() /// ///----------------------------------------------------------------------------------- /// /// feedback /// | /// V /// ValuesFromMaster /// | -> History ---| /// V | V /// here -> FeedbackCombinatorMethod --------> HistoryCombinatorMethod->nextline /// | | /// V V -/// getpossibleIdentifiersWithMasterFeedback() getPossibleIdentifiersWithHistory() +/// getpossibleIdentifiersWithMasterFeedback()getPossibleIdentifiersWithHistory() /// ///---------------------------------------------------------------------------------- /// -/// here -> sort -> most likely -> mostLikelyIdentifierAndReliability() +/// here -> sort -> most likely -> getmostLikelyIdentifierAndReliability() /// /// --------------------------------------------------------------------------------- /// \endverbatim /// the mentioned methods are early outs so if two ore more of them are run in /// the same step they will be interpreted as different time steps ///
 /// Default values for Combinators:
 ///	InputReliabilityCombinator		= combinationMin;
-///	PossibleIdentifierCombinationMethod	= PossibleIdentifierCombinationMethodMin;
+///	PossibleIdentifierCombinationMethod=PossibleIdentifierCombinationMethodMin;
 /// FeedbackCombinatorMethod		= FeedbackCombinatorMethodAverage;
 /// HistoryCombinatorMethod			= HistoryCombinatorMethodMax;
 ///	
+/// To understand the place where the combinator methods come into play a list +/// for each getter which Methods are used. +/// +///
+/// \c getInputReliability():
+///		-InputReliabilityCombinator
+/// \c getPossibleIdentifiers():
+///		-InputReliabilityCombinator
+///		-PossibleIdentifierCombinationMethod
+/// \c getpossibleIdentifiersWithMasterFeedback():
+///		-InputReliabilityCombinator
+///		-PossibleIdentifierCombinationMethod
+///		-FeedbackCombinatorMethod
+/// \c getPossibleIdentifiersWithHistory():
+///		-InputReliabilityCombinator
+///		-PossibleIdentifierCombinationMethod
+///		-FeedbackCombinatorMethod
+///		-HistoryCombinatorMethod
+/// \c getmostLikelyIdentifierAndReliability():
+///		-InputReliabilityCombinator
+///		-PossibleIdentifierCombinationMethod
+///		-FeedbackCombinatorMethod
+///		-HistoryCombinatorMethod
+/// 
+/// /// /// /// template class ReliabilityAndConfidenceCombinator { public: static_assert(std::is_arithmetic::value, "LowLevel: SensorValueType has to an arithmetic type\n"); static_assert(std::is_arithmetic::value, "LowLevel: IdentifierType has to an arithmetic type\n"); static_assert(std::is_arithmetic::value, "LowLevel: ReliabilityType has to an arithmetic type\n"); /// Typedef to shorten the writing. /// \c ConfOrRel using ConfOrRel = ConfOrRel; /// Calculates the input reliability by combining Reliability of the Sensor /// and the Slope Reliability \param SensorValue The sensor Value \note to set /// the combination method \c setInputReliabilityCombinator() auto getInputReliability(SensorValueType SensorValue) { auto inputReliability = getReliability(SensorValue, previousSensorValue, valueSetCounter); previousSensorValue = SensorValue; PreviousSensorValueExists = true; return inputReliability; } - /// Calculates the Reliability - /// \param SensorValue The current Values of the Sensor - /// - /// \return Reliability and Identifier of the current SensorValue - /// - ConfOrRel mostLikelyIdentifierAndReliability(SensorValueType SensorValue) { -#if Reliability_trace_level <= trace_outputs - LOG_TRACE_STREAM << "\nTrace level is set to: " << Reliability_trace_level - << "\n" - << "Will trace: " - << ((Reliability_trace_level == trace_outputs) - ? "outputs" - : (Reliability_trace_level == trace_vectors) - ? "vectors" - : (Reliability_trace_level == - trace_everything) - ? "everything" - : "undefined") - << trace_end; -#endif - - std::vector ActuallPossibleIdentifiers; - std::vector possibleIdentifiers; - ReliabilityType inputReliability = getInputReliability(SensorValue); - -#if Reliability_trace_level <= trace_vectors - LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; -#endif - - possibleIdentifiers << Confidence->operator()(SensorValue); - - possibleIdentifiers = - PossibleIdentifierCombinationMethod(possibleIdentifiers, inputReliability); - possibleIdentifiers = FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster); - - saveInHistory(possibleIdentifiers); -#if Reliability_trace_level <= trace_vectors - LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n" - << possibleIdentifiers << trace_end; - LOG_TRACE_STREAM << "\npossibleIdentifiers:\n" << possibleIdentifiers << trace_end; -#endif - possibleIdentifiers.clear(); - - possibleIdentifiers = getAllPossibleIdentifiersBasedOnHistory(); - - std::sort(possibleIdentifiers.begin(), possibleIdentifiers.end(), - [](ConfOrRel A, ConfOrRel B) -> bool { - return A.Reliability > B.Reliability; - }); - -#if Reliability_trace_level <= trace_outputs - LOG_TRACE_STREAM << "\noutput lowlevel: " << possibleIdentifiers.at(0) - << trace_end; -#endif - return possibleIdentifiers.at(0); - } - /// Calculates the possible Identifiers /// \param SensorValue the Sensor Value /// \brief it combines the input reliability and the confidence of the Sensor. /// The use combination method can be set using \c /// setPossibleIdentifierCombinationMethod() auto getPossibleIdentifiers(SensorValueType SensorValue) { std::vector possibleIdentifiers; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleIdentifiers << Confidence->operator()(SensorValue); - possibleIdentifiers = - PossibleIdentifierCombinationMethod(possibleIdentifiers, inputReliability); + possibleIdentifiers = PossibleIdentifierCombinationMethod( + possibleIdentifiers, inputReliability); return possibleIdentifiers; } /// return the Possible Values with the feedback in mind /// \param SensorValue The sensor Value /// \brief it combines the input reliability and the confidence of the Sensor. /// The combines them with FeedbackCombinatorMethod and returns the result. auto getpossibleIdentifiersWithMasterFeedback(SensorValueType SensorValue) { std::vector possibleIdentifiers; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleIdentifiers << Confidence->operator()(SensorValue); - possibleIdentifiers = - PossibleIdentifierCombinationMethod(possibleIdentifiers, inputReliability); + possibleIdentifiers = PossibleIdentifierCombinationMethod( + possibleIdentifiers, inputReliability); - possibleIdentifiers = FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster); + possibleIdentifiers = + FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster); return possibleIdentifiers; } - /// returns all possible Identifiers and Reliabilities with the History in mind - /// \param SensorValue the Sensor value - /// how this is done is described at the class. + /// returns all possible Identifiers and Reliabilities with the History in + /// mind \param SensorValue the Sensor value how this is done is described at + /// the class. auto getPossibleIdentifiersWithHistory(SensorValueType SensorValue) { std::vector ActuallPossibleIdentifiers; std::vector possibleIdentifiers; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleIdentifiers << Confidence->operator()(SensorValue); + possibleIdentifiers = PossibleIdentifierCombinationMethod( + possibleIdentifiers, inputReliability); possibleIdentifiers = - PossibleIdentifierCombinationMethod(possibleIdentifiers, inputReliability); - possibleIdentifiers = FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster); + FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster); saveInHistory(possibleIdentifiers); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n" << possibleIdentifiers << trace_end; - LOG_TRACE_STREAM << "\npossibleIdentifiers:\n" << possibleIdentifiers << trace_end; + LOG_TRACE_STREAM << "\npossibleIdentifiers:\n" + << possibleIdentifiers << trace_end; #endif possibleIdentifiers.clear(); return getAllPossibleIdentifiersBasedOnHistory(); } + + /// Calculates the Reliability + /// \param SensorValue The current Values of the Sensor + /// + /// \return Reliability and Identifier of the current SensorValue + /// + ConfOrRel getmostLikelyIdentifierAndReliability(SensorValueType SensorValue) { +#if Reliability_trace_level <= trace_outputs + LOG_TRACE_STREAM << "\nTrace level is set to: " << Reliability_trace_level + << "\n" + << "Will trace: " + << ((Reliability_trace_level == trace_outputs) + ? "outputs" + : (Reliability_trace_level == trace_vectors) + ? "vectors" + : (Reliability_trace_level == + trace_everything) + ? "everything" + : "undefined") + << trace_end; +#endif + + std::vector ActuallPossibleIdentifiers; + std::vector possibleIdentifiers; + ReliabilityType inputReliability = getInputReliability(SensorValue); + +#if Reliability_trace_level <= trace_vectors + LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; +#endif + + possibleIdentifiers << Confidence->operator()(SensorValue); + + possibleIdentifiers = PossibleIdentifierCombinationMethod( + possibleIdentifiers, inputReliability); + possibleIdentifiers = + FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster); + + saveInHistory(possibleIdentifiers); +#if Reliability_trace_level <= trace_vectors + LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n" + << possibleIdentifiers << trace_end; + LOG_TRACE_STREAM << "\npossibleIdentifiers:\n" + << possibleIdentifiers << trace_end; +#endif + possibleIdentifiers.clear(); + + possibleIdentifiers = getAllPossibleIdentifiersBasedOnHistory(); + + std::sort(possibleIdentifiers.begin(), possibleIdentifiers.end(), + [](ConfOrRel A, ConfOrRel B) -> bool { + return A.Reliability > B.Reliability; + }); + +#if Reliability_trace_level <= trace_outputs + LOG_TRACE_STREAM << "\noutput lowlevel: " << possibleIdentifiers.at(0) + << trace_end; +#endif + return possibleIdentifiers.at(0); + } + + /// feedback for this functionality most commonly it comes from a Master Agent /// \param ValuesFromMaster The Identifiers + Reliability for the feedback /// \brief This input kind of resembles a confidence but not - /// directly it more or less says: compared to the other Identifiers inside the - /// System these are the Identifiers with the Reliability that you have. + /// directly it more or less says: compared to the other Identifiers inside + /// the System these are the Identifiers with the Reliability that you have. void feedback(std::vector ValuesFromMaster) { this->ValuesFromMaster = ValuesFromMaster; } // // ----------------------Reliability and Confidence Function setters---------- // /// This is the setter for Confidence Function /// \param Confidence A pointer to the Functional for the \c Confidence of the /// Sensor value void setConfidenceFunction( std::unique_ptr> &Confidence) { this->Confidence = std::move(Confidence); } /// This is the setter for Reliability Function /// \param Reliability A pointer to the Functional for the Reliability /// \brief The Reliability takes the current Sensor value and return the /// Reliability of the value. void setReliabilityFunction( std::unique_ptr> &Reliability) { this->Reliability = std::move(Reliability); } /// This is the setter for ReliabilitySlope Function /// \param ReliabilitySlope A pointer to the Functional for the /// ReliabilitySlope /// \brief The ReliabilitySlope takes the difference of the current Sensor /// Value to the last one and tells you how likely the change is. void setReliabilitySlopeFunction( std::unique_ptr> &ReliabilitySlope) { this->ReliabilitySlope = std::move(ReliabilitySlope); } /// This is the setter for TimeConfidence Function /// \param TimeConfidence A pointer to the Functional for the TimeConfidence /// \brief The time function takes the position in the History with greater /// equals older and return a Reliability of how "relevant" it is. void setTimeConfidenceFunction( std::unique_ptr> &TimeConfidence) { this->TimeConfidence = std::move(TimeConfidence); } /// This is the setter for all possible States /// \param states A vector containing all states /// \brief This exists even though \c State Type is an arithmetic Type because /// the states do not need to be "next" to each other ( ex. states={ 1 7 24 }) void setStates(std::vector states) { this->States = states; } /// This sets the Maximum length of the History /// \param length The length void setHistoryLength(std::size_t length) { this->HistoryMaxSize = length; } /// This sets the Value set Counter /// \param ValueSetCounter the new Value /// \note This might actually be only an artifact. It is only used to get the /// reliability from the \c ReliabilitySlope [ ReliabilitySlope->operator()( /// (lastValue - actualValue) / (SensorValueType)valueSetCounter) ] void setValueSetCounter(unsigned int ValueSetCounter) { this->valueSetCounter = ValueSetCounter; } // // ----------------combinator setters----------------------------------------- // /// This sets the combination method used by the History /// \param Meth the method which should be used. predefined \c /// HistoryCombinatorMethodMin() \c HistoryCombinatorMethodMax() \c /// HistoryCombinatorMethodMult() \c HistoryCombinatorMethodAverage() void setHistoryCombinatorMethod(ReliabilityType (*Meth)(ReliabilityType, ReliabilityType)) { HistoryCombinatorMethod = Meth; } - /// sets the predefined method for the combination of the possible Identifiers and - /// the master \param Meth the method predefined ones are - /// \c FeedbackCombinatorMethodAverage() \c FeedbackCombinatorMethodMin() \c + /// sets the predefined method for the combination of the possible Identifiers + /// and the master \param Meth the method predefined ones are \c + /// FeedbackCombinatorMethodAverage() \c FeedbackCombinatorMethodMin() \c /// FeedbackCombinatorMethodMax() \c FeedbackCombinatorMethodMult() void setFeedbackCombinatorMethod(std::vector (*Meth)( std::vector, std::vector)) { FeedbackCombinatorMethod = Meth; } /// Sets the used combination method for Possible Identifiers /// \param Meth a Pointer for the used Method. Predefined methods \c - /// PossibleIdentifierCombinationMethodMin() \c PossibleIdentifierCombinationMethodMax() - /// \c PossibleIdentifierCombinationMethodAverage() + /// PossibleIdentifierCombinationMethodMin() \c + /// PossibleIdentifierCombinationMethodMax() \c + /// PossibleIdentifierCombinationMethodAverage() void setPossibleIdentifierCombinationMethod( std::vector (*Meth)(std::vector, ReliabilityType)) { PossibleIdentifierCombinationMethod = Meth; } /// sets the input reliability combinator method /// \param method the to be used method /// \note there are predefined methods \c combinationMin() \c combinationMax() /// \c combinationAverage() void setInputReliabilityCombinator( ReliabilityType (*method)(ReliabilityType, ReliabilityType)) { InputReliabilityCombinator = method; } // // ----------------predefined combinators------------------------------------ // - /// predefined Method - static ReliabilityType HistoryCombinatorMethodMin(ReliabilityType A, - ReliabilityType B) { - return std::min(A, B); - } - /// predefined Method - static ReliabilityType HistoryCombinatorMethodMax(ReliabilityType A, - ReliabilityType B) { - return std::max(A, B); - } - /// predefined Method - static ReliabilityType HistoryCombinatorMethodMult(ReliabilityType A, - ReliabilityType B) { - return A * B; - } - /// predefined Method - static ReliabilityType HistoryCombinatorMethodAverage(ReliabilityType A, - ReliabilityType B) { - return (A + B) / 2; - } + struct predefinedMethods { + /// predefined Method + static ReliabilityType HistoryCombinatorMethodMin(ReliabilityType A, + ReliabilityType B) { + return std::min(A, B); + } + /// predefined Method + static ReliabilityType HistoryCombinatorMethodMax(ReliabilityType A, + ReliabilityType B) { + return std::max(A, B); + } + /// predefined Method + static ReliabilityType HistoryCombinatorMethodMult(ReliabilityType A, + ReliabilityType B) { + return A * B; + } + /// predefined Method + static ReliabilityType HistoryCombinatorMethodAverage(ReliabilityType A, + ReliabilityType B) { + return (A + B) / 2; + } - /// predefined method - static std::vector - FeedbackCombinatorMethodAverage(std::vector A, - std::vector B) { - return average(A, B); - } - /// predefined method - static std::vector - FeedbackCombinatorMethodMin(std::vector A, - std::vector B) { - return min(A, B); - } - /// predefined method - static std::vector - FeedbackCombinatorMethodMax(std::vector A, - std::vector B) { - return max(A, B); - } - /// predefined method - static std::vector - FeedbackCombinatorMethodMult(std::vector A, - std::vector B) { - return mult(A, B); - } + /// predefined method + static std::vector + FeedbackCombinatorMethodAverage(std::vector A, + std::vector B) { + return average(A, B); + } + /// predefined method + static std::vector + FeedbackCombinatorMethodMin(std::vector A, + std::vector B) { + return min(A, B); + } + /// predefined method + static std::vector + FeedbackCombinatorMethodMax(std::vector A, + std::vector B) { + return max(A, B); + } + /// predefined method + static std::vector + FeedbackCombinatorMethodMult(std::vector A, + std::vector B) { + return mult(A, B); + } - /// Predefined combination method for possible Identifiers - static std::vector - PossibleIdentifierCombinationMethodMin(std::vector A, - ReliabilityType B) { - return min(A, B); - } - /// Predefined combination method for possible Identifiers - static std::vector - PossibleIdentifierCombinationMethodMax(std::vector A, - ReliabilityType B) { - return max(A, B); - } + /// Predefined combination method for possible Identifiers + static std::vector + PossibleIdentifierCombinationMethodMin(std::vector A, + ReliabilityType B) { + return min(A, B); + } + /// Predefined combination method for possible Identifiers + static std::vector + PossibleIdentifierCombinationMethodMax(std::vector A, + ReliabilityType B) { + return max(A, B); + } - /// Predefined combination method for possible Identifiers - static std::vector - PossibleIdentifierCombinationMethodAverage(std::vector A, - ReliabilityType B) { - return average(A, B); - } + /// Predefined combination method for possible Identifiers + static std::vector + PossibleIdentifierCombinationMethodAverage(std::vector A, + ReliabilityType B) { + return average(A, B); + } - /// Predefined combination method for possible Identifiers - static std::vector - PossibleIdentifierCombinationMethodMult(std::vector A, - ReliabilityType B) { - return mult(A, B); - } + /// Predefined combination method for possible Identifiers + static std::vector + PossibleIdentifierCombinationMethodMult(std::vector A, + ReliabilityType B) { + return mult(A, B); + } - /// The predefined min combinator method - static ReliabilityType combinationMin(ReliabilityType A, ReliabilityType B) { - return std::min(A, B); - } + /// The predefined min combinator method + static ReliabilityType combinationMin(ReliabilityType A, + ReliabilityType B) { + return std::min(A, B); + } - /// The predefined max combinator method - static ReliabilityType combinationMax(ReliabilityType A, ReliabilityType B) { - return std::max(A, B); - } + /// The predefined max combinator method + static ReliabilityType combinationMax(ReliabilityType A, + ReliabilityType B) { + return std::max(A, B); + } - /// The predefined average combinator method - static ReliabilityType combinationAverage(ReliabilityType A, - ReliabilityType B) { - return (A + B) / 2; - } + /// The predefined average combinator method + static ReliabilityType combinationAverage(ReliabilityType A, + ReliabilityType B) { + return (A + B) / 2; + } - /// The predefined average combinator method - static ReliabilityType combinationMult(ReliabilityType A, ReliabilityType B) { - return A * B; - } + /// The predefined average combinator method + static ReliabilityType combinationMult(ReliabilityType A, + ReliabilityType B) { + return A * B; + } + }; + // ---------------------------------------------------------------- + // Stored Values + // ---------------------------------------------------------------- private: std::vector> History; std::size_t HistoryMaxSize; std::vector ValuesFromMaster; SensorValueType previousSensorValue; unsigned int valueSetCounter; std::vector States; bool PreviousSensorValueExists = false; - std::unique_ptr> + std::unique_ptr< + RangeConfidence> Confidence; std::unique_ptr> Reliability; std::unique_ptr> ReliabilitySlope; std::unique_ptr> TimeConfidence; // combination functions ReliabilityType (*InputReliabilityCombinator)( - ReliabilityType, ReliabilityType) = combinationMin; + ReliabilityType, ReliabilityType) = predefinedMethods::combinationMin; std::vector (*PossibleIdentifierCombinationMethod)( - std::vector, - ReliabilityType) = PossibleIdentifierCombinationMethodMin; + std::vector, ReliabilityType) = + predefinedMethods::PossibleIdentifierCombinationMethodMin; std::vector (*FeedbackCombinatorMethod)(std::vector, std::vector) = - FeedbackCombinatorMethodAverage; + predefinedMethods::FeedbackCombinatorMethodAverage; ReliabilityType (*HistoryCombinatorMethod)(ReliabilityType, ReliabilityType) = - HistoryCombinatorMethodMax; + predefinedMethods::HistoryCombinatorMethodMax; - /*--------------------------------- needed Functions - * -----------------------------------------------------*/ + // --------------------------------------------------------------------------- + // needed Functions + // --------------------------------------------------------------------------- /// returns the Reliability /// \param actualValue The Value of the Sensor /// \param lastValue of the Sensor this is stored in the class /// \param valueSetCounter It has an effect on the difference of the current /// and last value This might not be needed anymore /// \brief it returns the combination the \c Reliability function and \c /// ReliabilitySlope if the previous value exists. if it doesn't it only /// returns the \c Reliability function value. ReliabilityType getReliability(SensorValueType actualValue, SensorValueType lastValue, unsigned int valueSetCounter) { ReliabilityType relAbs = Reliability->operator()(actualValue); if (PreviousSensorValueExists) { ReliabilityType relSlo = ReliabilitySlope->operator()( (lastValue - actualValue) / (SensorValueType)valueSetCounter); return InputReliabilityCombinator(relAbs, relSlo); } else return relAbs; } /// adapts the possible Identifiers by checking the History and combines those /// values. currently with max /// \brief combines the historic values with the \c TimeConfidence function /// and returns the maximum Reliability for all Identifiers. std::vector getAllPossibleIdentifiersBasedOnHistory() { // iterate through all history entries std::size_t posInHistory = 0; std::vector possibleIdentifiers; for (auto pShE = History.begin(); pShE < History.end(); pShE++, posInHistory++) { // iterate through all possible Identifiers of each history entry for (ConfOrRel &pSh : *pShE) { IdentifierType historyIdentifier = pSh.Identifier; ReliabilityType historyConf = pSh.Reliability; historyConf = historyConf * TimeConfidence->operator()(posInHistory); bool foundIdentifier = false; for (ConfOrRel &pS : possibleIdentifiers) { if (pS.Identifier == historyIdentifier) { pS.Reliability = HistoryCombinatorMethod(pS.Reliability, historyConf); foundIdentifier = true; } } if (foundIdentifier == false) { ConfOrRel possibleIdentifier; possibleIdentifier.Identifier = historyIdentifier; possibleIdentifier.Reliability = historyConf; possibleIdentifiers.push_back(possibleIdentifier); } } } return possibleIdentifiers; } /// saves the Identifiers in the History - /// \brief It checks the incoming Identifiers if any have a Reliability greater - /// than 0.5 all of them get saved inside the History and then the + /// \brief It checks the incoming Identifiers if any have a Reliability + /// greater than 0.5 all of them get saved inside the History and then the /// History get shortened to the maximal length. It only saves the Value if /// the History is empty. /// /// \param actualPossibleIdentifiers The Identifiers which should be saved /// /// \note Does the History really make sense if the values are to small it /// only stores something if it's empty and not if it isn't completely filled void saveInHistory(std::vector actualPossibleIdentifiers) { - // check if the reliability of at least one possible Identifier is high enough + // check if the reliability of at least one possible Identifier is high + // enough bool atLeastOneRelIsHigh = false; for (ConfOrRel pS : actualPossibleIdentifiers) { if (pS.Reliability > 0.5) { atLeastOneRelIsHigh = true; } } - // save possible Identifiers if at least one possible Identifier is high enough (or if - // the history is empty) + // save possible Identifiers if at least one possible Identifier is high + // enough (or if the history is empty) if (History.size() < 1 || atLeastOneRelIsHigh == true) { History.insert(History.begin(), actualPossibleIdentifiers); // if history size is higher than allowed, save oldest element while (History.size() > HistoryMaxSize) { // delete possibleIdentifierHistory.back(); History.pop_back(); } } } }; } // namespace agent } // namespace rosa #endif // !ROSA_AGENT_ReliabilityConfidenceCombinator_H