diff --git a/include/rosa/agent/CrossReliability.h b/include/rosa/agent/CrossReliability.h index 065824a..21f3df7 100644 --- a/include/rosa/agent/CrossReliability.h +++ b/include/rosa/agent/CrossReliability.h @@ -1,347 +1,353 @@ //===-- rosa/delux/CrossReliability.h ---------------------------*- C++ -*-===// // // The RoSA Framework // +// Distributed under the terms and conditions of the Boost Software License 1.0. +// See accompanying file LICENSE. +// +// If you did not receive a copy of the license file, see +// http://www.boost.org/LICENSE_1_0.txt. +// //===----------------------------------------------------------------------===// /// /// \file rosa/delux/CrossReliability.h /// /// \author Daniel Schnoell /// /// \date 2019 /// /// \brief /// /// \todo there is 1 exception that needs to be handled correctly. /// \note the default search function is extremely slow maby this could be done /// via template for storage class and the functions/methods to efficiently find /// the correct LinearFunction //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_CROSSRELIABILITY_H #define ROSA_AGENT_CROSSRELIABILITY_H // FIXME: ROSA_LOG_LEVEL is defined by the build system, this should be // removed. //#define ROSA_LOG_LEVEL 100 #include "rosa/agent/Abstraction.hpp" #include "rosa/agent/Functionality.h" #include "rosa/core/forward_declarations.h" // needed for id_t #include "rosa/support/log.h" // needed for error "handling" // nedded headers #include #include //assert #include // for static methods #include #include namespace rosa { namespace agent { /// Calculates the Cross Reliability /// \brief it uses the state represented by a numerical value and calculates the /// Reliability of a given agent( represented by there id ) in connection to all /// other given agents /// /// \note all combination of agents and there coresponding Cross Reliability /// function have to be specified template class CrossReliability : public Abstraction { using Abstraction = typename rosa::agent::Abstraction; struct Functionblock { bool exists = false; id_t A; id_t B; Abstraction *Funct; }; /// From Maxi in his code defined as 1 can be changed by set Type crossReliabilityParameter = 1; /// Stored Cross Reliability Functions std::vector Functions; /// Method which is used to combine the generated values Type (*Method)(std::vector values) = AVERAGE; //-------------------------------------------------------------------------------- // helper function /// evalues the absolute distance between two values /// \note this is actually the absolute distance but to ceep it somewhat /// conform with maxis code template Type_t AbsuluteValue(Type_t A, Type_t B) { static_assert(std::is_arithmetic::value); return ((A - B) < 0) ? B - A : A - B; } /// verry inefficient searchFunction Functionblock (*searchFunction)(std::vector vect, const id_t nameA, const id_t nameB) = [](std::vector vect, const id_t nameA, const id_t nameB) -> Functionblock { for (Functionblock tmp : vect) { if (tmp.A == nameA && tmp.B == nameB) return tmp; if (tmp.A == nameB && tmp.B == nameA) return tmp; } return Functionblock(); }; /// evaluest the corisponding LinearFunction thith the score difference /// \param nameA these two parameters are the unique identifiers /// \param nameB these two parameters are the unique identifiers /// for the LinerFunction /// /// \note If the block nameA nameB doesn't exist it logs the error and returns /// 0 /// \note it doesn't matter if they are swapped Type getCrossReliabilityFromProfile(id_t nameA, id_t nameB, StateType scoreDifference) { Functionblock block = searchFunction(Functions, nameA, nameB); if (!block.exists) { LOG_ERROR(("CrossReliability: Block:" + std::to_string(nameA) + "," + std::to_string(nameB) + "doesn't exist returning 0")); return 0; } return block.Funct->operator()(scoreDifference); } public: /// adds a Cross Reliability Profile used to get the Reliability of the state /// difference void addCrossReliabilityProfile(id_t idA, id_t idB, Abstraction *Function) { Functions.push_back({true, idA, idB, Function}); } /// sets the cross reliability parameter void setCrossReliabilityParameter(Type val) { crossReliabilityParameter = val; } /// sets the used method to combine the values void setCrossReliabilityMethod(Type (*Meth)(std::vector values)) { Method = Meth; } ~CrossReliability() { for (auto tmp : Functions) delete tmp.Funct; Functions.clear(); } /// Calculets the CrossReliability /// \note both Main and Slaveagents are represented by there data and an /// unique identifier /// /// \param MainAgent defines the value pair around which the Cross Reliability /// is calculated /// \param SlaveAgents defines all value pairs of the connected Agents it /// doesn't matter if Main agent exists inside this vector Type operator()(std::pair &MainAgent, std::vector> &SlaveAgents); /// predefined combination method static Type CONJUNCTION(std::vector values) { static_assert(std::is_arithmetic::value); // sanitny check return *std::min_element(values.begin(), values.end()); } /// predefined combination method static Type AVERAGE(std::vector values) { static_assert(std::is_arithmetic::value); // sanitny check return std::accumulate(values.begin(), values.end(), 0.0) / values.size(); } /// predefined combination method static Type DISJUNCTION(std::vector values) { static_assert(std::is_arithmetic::value); // sanitny check return *std::max_element(values.begin(), values.end()); } }; template inline Type CrossReliability:: operator()(std::pair &MainAgent, std::vector> &SlaveAgents) { static_assert(std::is_arithmetic::value); // sanitny check static_assert(std::is_arithmetic::value); // sanitny check Type crossReliabiability; std::vector values; for (std::pair SlaveAgent : SlaveAgents) { if (SlaveAgent.first == MainAgent.first) continue; if (MainAgent.second == SlaveAgent.second) crossReliabiability = 1; else crossReliabiability = 1 / (crossReliabilityParameter * AbsuluteValue(MainAgent.second, SlaveAgent.second)); // profile reliability Type crossReliabilityFromProfile = getCrossReliabilityFromProfile( MainAgent.first, SlaveAgent.first, AbsuluteValue(MainAgent.second, SlaveAgent.second)); values.push_back( std::max(crossReliabiability, crossReliabilityFromProfile)); } return Method(values); } /// Calculates the Cross Confidence /// \brief It uses the a theoretical state represented by a numerical value and /// calculates the Reliability of a given agent( represented by there id ) in /// connection to all other given agents this can be used to get a Confidence of /// the current state /// /// \note all combination of agents and there coresponding Cross Reliability /// function have to be specified template class CrossConfidence : public Abstraction { using Abstraction = typename rosa::agent::Abstraction; struct Functionblock { bool exists = false; id_t A; id_t B; Abstraction *Funct; }; /// From Maxi in his code defined as 1 can be changed by set Type crossReliabilityParameter = 1; /// Stored Cross Reliability Functions std::vector Functions; /// Method which is used to combine the generated values Type (*Method)(std::vector values) = AVERAGE; //-------------------------------------------------------------------------------- // helper function /// evalues the absolute distance between two values /// \note this is actually the absolute distance but to ceep it somewhat /// conform with maxis code template Type_t AbsuluteValue(Type_t A, Type_t B) { static_assert(std::is_arithmetic::value); return ((A - B) < 0) ? B - A : A - B; } /// verry inefficient searchFunction Functionblock (*searchFunction)(std::vector vect, const id_t nameA, const id_t nameB) = [](std::vector vect, const id_t nameA, const id_t nameB) -> Functionblock { for (Functionblock tmp : vect) { if (tmp.A == nameA && tmp.B == nameB) return tmp; if (tmp.A == nameB && tmp.B == nameA) return tmp; } return Functionblock(); }; /// evaluest the corisponding LinearFunction thith the score difference /// \param nameA these two parameters are the unique identifiers /// \param nameB these two parameters are the unique identifiers /// for the LinerFunction /// /// \note it doesn't matter if they are swapped Type getCrossReliabilityFromProfile(id_t nameA, id_t nameB, StateType scoreDifference) { Functionblock block = searchFunction(Functions, nameA, nameB); if (!block.exists) { LOG_ERROR(("CrossReliability: Block:" + std::to_string(nameA) + "," + std::to_string(nameB) + "doesn't exist returning 0")); return 0; } return block.Funct->operator()(scoreDifference); } public: /// adds a Cross Reliability Profile used to get the Reliability of the state /// difference void addCrossReliabilityProfile(id_t idA, id_t idB, Abstraction *Function) { Functions.push_back({true, idA, idB, Function}); } /// sets the cross reliability parameter void setCrossReliabilityParameter(Type val) { crossReliabilityParameter = val; } /// sets the used method to combine the values void setCrossReliabilityMethod(Type (*Meth)(std::vector values)) { Method = Meth; } ~CrossConfidence() { for (auto tmp : Functions) delete tmp.Funct; Functions.clear(); } Type operator()(id_t MainAgent, StateType TheoreticalValue, std::vector> &SlaveAgents); /// predefined combination method static Type CONJUNCTION(std::vector values) { static_assert(std::is_arithmetic::value); // sanitny check return *std::min_element(values.begin(), values.end()); } /// predefined combination method static Type AVERAGE(std::vector values) { static_assert(std::is_arithmetic::value); // sanitny check return std::accumulate(values.begin(), values.end(), 0.0) / values.size(); } /// predefined combination method static Type DISJUNCTION(std::vector values) { static_assert(std::is_arithmetic::value); // sanitny check return *std::max_element(values.begin(), values.end()); } }; template inline Type CrossConfidence:: operator()(id_t MainAgent, StateType TheoreticalValue, std::vector> &SlaveAgents) { static_assert(std::is_arithmetic::value); // sanitny check static_assert(std::is_arithmetic::value); // sanitny check Type crossReliabiability; std::vector values; for (std::pair SlaveAgent : SlaveAgents) { if (SlaveAgent.first == MainAgent) continue; if (TheoreticalValue == SlaveAgent.second) crossReliabiability = 1; else crossReliabiability = 1 / (crossReliabilityParameter * AbsuluteValue(TheoreticalValue, SlaveAgent.second)); // profile reliability Type crossReliabilityFromProfile = getCrossReliabilityFromProfile( MainAgent, SlaveAgent.first, AbsuluteValue(TheoreticalValue, SlaveAgent.second)); values.push_back( std::max(crossReliabiability, crossReliabilityFromProfile)); } return Method(values); } } // End namespace agent } // End namespace rosa #endif // ROSA_AGENT_CROSSRELIABILITY_H diff --git a/lib/agent/CrossReliability.cpp b/lib/agent/CrossReliability.cpp index 21ed3b4..7b3a527 100644 --- a/lib/agent/CrossReliability.cpp +++ b/lib/agent/CrossReliability.cpp @@ -1,20 +1,26 @@ //===-- agent/CrossReliability.cpp ------------------------------*- C++ -*-===// // // The RoSA Framework // +// Distributed under the terms and conditions of the Boost Software License 1.0. +// See accompanying file LICENSE. +// +// If you did not receive a copy of the license file, see +// http://www.boost.org/LICENSE_1_0.txt. +// //===----------------------------------------------------------------------===// /// /// \file agent/CrossReliability.cpp /// /// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at) /// /// \date 2019 /// /// \brief Implementation for rosa/agent/CrossReliability.cpp /// /// \note Empty implementation, source file here to have a compile database /// entry for rosa/agent/CrossReliability.h /// //===----------------------------------------------------------------------===// #include "rosa/agent/CrossReliability.h"