diff --git a/include/rosa/agent/ReliabilityConfidenceCombinator.h b/include/rosa/agent/ReliabilityConfidenceCombinator.h index d06d7ee..8f3be6e 100644 --- a/include/rosa/agent/ReliabilityConfidenceCombinator.h +++ b/include/rosa/agent/ReliabilityConfidenceCombinator.h @@ -1,762 +1,760 @@ //===-- rosa/agent/ReliabilityConfidenceCombinator.h ------------*- C++ -*-===// // // The RoSA Framework // //===----------------------------------------------------------------------===// /// /// \file rosa/agent/ReliabilityConfidenceCombinator.h /// /// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at) /// /// \date 2019 /// /// \brief Definition of *ReliabilityConfidenceCombinator* *functionality*. /// /// \note based on Maximilian Goetzinger (maxgot@utu.fi) code in /// CAM_Dirty_include SA-EWS2_Version... inside Agent.cpp /// /// \note By defining and setting Reliability_trace_level it is possible to /// change the level to which it should be traced. \note All classes throw /// runtime errors if not all things are set /// /// \note should the Reliability be capped? /// /// //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_RELIABILITY_H #define ROSA_AGENT_RELIABILITY_H #include "rosa/agent/CrossReliability.h" #include "rosa/agent/FunctionAbstractions.hpp" #include "rosa/agent/Functionality.h" #include "rosa/agent/RangeConfidence.hpp" #include #include #include /// 0 everything /// 1 vectors /// 2 outputs #define trace_everything 0 #define trace_vectors 1 #define trace_outputs 2 #ifndef Reliability_trace_level #define Reliability_trace_level 0 #endif #define trace_end "\n\n\n" namespace rosa { namespace agent { /// This is a struct with a few methods that make Reliability Combinator /// more readable \tparam StateType The datatype of the States \tparam /// ReliabilityType The datatype of the Reliability template struct ConfOrRel { /// making both Template Arguments readable to make a few things easier typedef StateType _StateType; /// making both Template Arguments readable to make a few things easier typedef ReliabilityType _ReliabilityType; /// The actual place where the data is stored StateType score; /// The actual place where the data is stored ReliabilityType Reliability; ConfOrRel(StateType _score, ReliabilityType _Reliability) : score(_score), Reliability(_Reliability){}; ConfOrRel(){}; /// Pushes the Data in a Human readable form /// \param out The stream where it is written to /// \param c The struct itself friend std::ostream &operator<<(std::ostream &out, const ConfOrRel &c) { out << "Score: " << c.score << "\t Reliability: " << c.Reliability << " "; return out; } /// needed or it throws an clang diagnosic error typedef std::map map; // needed or it throws an clang diagnosic error /// Filles the vector with the data inside the map /// \param me The vector to be filled /// \param data The data wich is to be pushed into the vector friend std::vector &operator<<(std::vector &me, map &&data) { for (auto tmp : data) { me.push_back(ConfOrRel(tmp.first, tmp.second)); #if Reliability_trace_level <= trace_everything LOG_TRACE_STREAM << "\n" << ConfOrRel(tmp.first, tmp.second) << trace_end; #endif } return me; } /// This is to push the data inside a vector in a human readable way into the /// ostream \param out The ostream \param c The vector which is read friend std::ostream &operator<<(std::ostream &out, const std::vector &c) { std::size_t index = 0; for (ConfOrRel data : c) { out << index << " : " << data << "\n"; index++; } return out; } }; /// This calculates the minimum of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector min(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = std::min(tmp.Reliability, value); return me; } /// This calculates the maximum of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector max(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = std::max(tmp.Reliability, value); return me; } /// This calculates the average of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector average(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = (tmp.Reliability + value) / 2; return me; } /// This calculates the average of the Reliabilities & the given value /// \param me The vector with the Reliabilities /// \param value The comparing value template std::vector mult(std::vector me, typename Conf::_ReliabilityType value) { static_assert(std::is_arithmetic::value); for (auto tmp : me) tmp.Reliability = tmp.Reliability * value / 2; return me; } /// This average's the Reliabilities of the same Scores template std::vector average(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.score == tmp_other.score) { tmp_me.Reliability = (tmp_me.Reliability + tmp_other.Reliability) / 2; } } return A; } /// This min's the Reliabilities of the same Scores template std::vector min(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.score == tmp_other.score) { tmp_me.Reliability = std::min(tmp_me.Reliability + tmp_other.Reliability); } } return A; } /// This max's the Reliabilities of the same Scores template std::vector max(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.score == tmp_other.score) { tmp_me.Reliability = std::max(tmp_me.Reliability + tmp_other.Reliability); } } return A; } /// This mult's the Reliabilities of the same Scores template std::vector mult(std::vector A, std::vector B) { static_assert(std::is_arithmetic::value); for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.score == tmp_other.score) { tmp_me.Reliability = tmp_me.Reliability * tmp_other.Reliability; } } return A; } /// This is the combinator for Reliability and confidences it takes the /// Sensor value, its "History" and feedback from \c /// CrossCombinator to calculate different Reliabilities. /// \tparam SensorValueType Datatype of the Sensor value ( Typically /// double or float) \tparam StateType Datatype of the State ( Typically long or /// int) /// \tparam ReliabilityType Datatype of the Reliability ( /// Typically double or float) /// /// \note more information about how it calculates /// the Reliabilities /// \verbatim ///---------------------------------------------------------------------------------- /// /// /// ->Reliability---> getInputReliability() /// | | /// | V /// Sensor Value ---| PossibleScoreCombinationMethod -> next line /// | A | /// | | V /// ->Confidence--- getPossibleScores() /// ///----------------------------------------------------------------------------------- /// /// feedback /// | /// V /// ValuesFromMaster /// | -> History ---| /// V | V /// here -> FeedbackCombinatorMethod --------> HistoryCombinatorMethod->nextline /// | | /// V V /// getpossibleScoresWithMasterFeedback() getPossibleScoresWithHistory() /// ///---------------------------------------------------------------------------------- /// /// here -> sort -> most likely -> mostLikelySoreAndReliability() /// /// --------------------------------------------------------------------------------- /// \endverbatim /// the mentioned methods are early outs so if two ore more of them are run in /// the same step they will be interpreted as different time steps ///
 /// Default values for Combinators:
 ///	InputReliabilityCombinator		= combinationMin;
 ///	PossibleScoreCombinationMethod	= PossibleScoreCombinationMethodMin;
 /// FeedbackCombinatorMethod		= FeedbackCombinatorMethodAverage;
 /// HistoryCombinatorMethod			= HistoryCombinatorMethodMax;
 ///	
/// /// /// template class ReliabilityAndConfidenceCombinator { public: static_assert(std::is_arithmetic::value, "LowLevel: SensorValueType has to an arithmetic type\n"); static_assert(std::is_arithmetic::value, "LowLevel: StateType has to an arithmetic type\n"); static_assert(std::is_arithmetic::value, "LowLevel: ReliabilityType has to an arithmetic type\n"); /// Typedef to shorten the writing. /// \c ConfOrRel typedef ConfOrRel ConfOrRel; /// Calculates the input reliability by combining Reliability of the Sensor /// and the Slope Reliability \param SensorValue The sensor Value \note to set /// the combination method \c setInputReliabilityCombinator() auto getInputReliability(SensorValueType SensorValue) { auto inputReliability = getReliability(SensorValue, previousSensorValue, valueSetCounter); previousSensorValue = SensorValue; PreviousSensorValueExists = true; return inputReliability; } /// Calculates the Reliability /// \param SensorValue The current Values of the Sensor /// /// \return Reliability and Score of the current SensorValue /// ConfOrRel mostLikelySoreAndReliability(SensorValueType SensorValue) { #if Reliability_trace_level <= trace_outputs LOG_TRACE_STREAM << "\nTrace level is set to: " << Reliability_trace_level << "\n" << "Will trace: " << ((Reliability_trace_level == trace_outputs) ? "outputs" : (Reliability_trace_level == trace_vectors) ? "vectors" : (Reliability_trace_level == trace_everything) ? "everything" : "undefined") << trace_end; #endif std::vector ActuallPossibleScores; std::vector possibleScores; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleScores << Confidence->operator()(SensorValue); possibleScores = PossibleScoreCombinationMethod(possibleScores, inputReliability); possibleScores = FeedbackCombinatorMethod(possibleScores, ValuesFromMaster); saveInHistory(possibleScores); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\nActuallPossibleScores:\n" << possibleScores << trace_end; LOG_TRACE_STREAM << "\npossibleScores:\n" << possibleScores << trace_end; #endif possibleScores.clear(); possibleScores = getAllPossibleScoresBasedOnHistory(); std::sort(possibleScores.begin(), possibleScores.end(), [](ConfOrRel A, ConfOrRel B) -> bool { return A.Reliability > B.Reliability; }); #if Reliability_trace_level <= trace_outputs LOG_TRACE_STREAM << "\noutput lowlevel: " << possibleScores.at(0) << trace_end; #endif return possibleScores.at(0); } /// Calculates the possible Scores /// \param SensorValue the Sensor Value /// \brief it combines the input reliability and the confidence of the Sensor. /// The use combination method can be set using \c /// setPossibleScoreCombinationMethod() auto getPossibleScores(SensorValueType SensorValue) { std::vector possibleScores; ReliabilityType inputReliability = getInputReliability(SensorValue); // get input rel() #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleScores << Confidence->operator()(SensorValue); possibleScores = PossibleScoreCombinationMethod(possibleScores, inputReliability); return possibleScores; } /// return the Possible Values with the feedback in mind /// \param SensorValue The sensor Value /// \brief it combines the input reliability and the confidence of the Sensor. /// The combines them with FeedbackCombinatorMethod and returns the result. auto getpossibleScoresWithMasterFeedback(SensorValueType SensorValue) { std::vector possibleScores; ReliabilityType inputReliability = getInputReliability(SensorValue); // get input rel() #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleScores << Confidence->operator()(SensorValue); possibleScores = PossibleScoreCombinationMethod(possibleScores, inputReliability); - // set comb method with values from master ( class :: min | max | average | - // mult | [] ()-> {} ) possibleScores = FeedbackCombinatorMethod(possibleScores, ValuesFromMaster); return possibleScores; } /// returns all possible Scores and Reliabilities with the History in mind /// \param SensorValue the Sensor value /// how this is done is described at the class. auto getPossibleScoresWithHistory(SensorValueType SensorValue) { std::vector ActuallPossibleScores; std::vector possibleScores; ReliabilityType inputReliability = getInputReliability(SensorValue); // get input rel() #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleScores << Confidence->operator()(SensorValue); possibleScores = PossibleScoreCombinationMethod(possibleScores, inputReliability); possibleScores = FeedbackCombinatorMethod(possibleScores, ValuesFromMaster); saveInHistory(possibleScores); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\nActuallPossibleScores:\n" << possibleScores << trace_end; LOG_TRACE_STREAM << "\npossibleScores:\n" << possibleScores << trace_end; #endif possibleScores.clear(); return getAllPossibleScoresBasedOnHistory(); } /// feedback for this functionality most commonly it comes from a Master Agent /// \param ValuesFromMaster The Scores + Reliability for the feedback /// \brief This input kind of resembles a confidence but not /// directly it more or less says: compared to the other Scores inside the /// System these are the Scores with the Reliability that you have. void feedback(std::vector ValuesFromMaster) { this->ValuesFromMaster = ValuesFromMaster; } // // ----------------------Reliability and Confidence Function setters---------- // /// This is the setter for Confidence Function /// \param Confidence A pointer to the Functional for the \c Confidence of the /// Sensor value void setConfidenceFunction( std::unique_ptr> &Confidence) { this->Confidence = std::move(Confidence); } /// This is the setter for Reliability Function /// \param Reliability A pointer to the Functional for the Reliability /// \brief The Reliability takes the current Sensor value and return the /// Reliability of the value. void setReliabilityFunction( std::unique_ptr> &Reliability) { this->Reliability = std::move(Reliability); } /// This is the setter for ReliabilitySlope Function /// \param ReliabilitySlope A pointer to the Functional for the /// ReliabilitySlope /// \brief The ReliabilitySlope takes the difference of the current Sensor /// Value to the last one and tells you how likely the change is. void setReliabilitySlopeFunction( std::unique_ptr> &ReliabilitySlope) { this->ReliabilitySlope = std::move(ReliabilitySlope); } /// This is the setter for TimeConfidence Function /// \param TimeConfidence A pointer to the Functional for the TimeConfidence /// \brief The time function takes the position in the History with greater /// equals older and return a Reliability of how "relevant" it is. void setTimeConfidenceFunction( std::unique_ptr> &TimeConfidence) { this->TimeConfidence = std::move(TimeConfidence); } /// This is the setter for all possible States /// \param states A vector containing all states /// \brief This exists even though \c State Type is an arithmetic Type because /// the states do not need to be "next" to each other ( ex. states={ 1 7 24 }) void setStates(std::vector states) { this->States = states; } /// This sets the Maximum length of the History /// \param length The length void setHistoryLength(std::size_t length) { this->HistoryMaxSize = length; } /// This sets the Value set Counter /// \param ValueSetCounter the new Value /// \note This might actually be only an artifact. It is only used to get the /// reliability from the \c ReliabilitySlope [ ReliabilitySlope->operator()( /// (lastValue - actualValue) / (SensorValueType)valueSetCounter) ] void setValueSetCounter(unsigned int ValueSetCounter) { this->valueSetCounter = ValueSetCounter; } // // ----------------combinator setters----------------------------------------- // /// This sets the combination method used by the History /// \param Meth the method which should be used. predefined \c /// HistoryCombinatorMethodMin() \c HistoryCombinatorMethodMax() \c /// HistoryCombinatorMethodMult() \c HistoryCombinatorMethodAverage() void setHistoryCombinatorMethod(ReliabilityType (*Meth)(ReliabilityType, ReliabilityType)) { HistoryCombinatorMethod = Meth; } /// sets the predefined method for the combination of the possible scores and /// the master \param Meth the method predefined ones are /// \c FeedbackCombinatorMethodAverage() \c FeedbackCombinatorMethodMin() \c /// FeedbackCombinatorMethodMax() \c FeedbackCombinatorMethodMult() void setFeedbackCombinatorMethod(std::vector (*Meth)( std::vector, std::vector)) { FeedbackCombinatorMethod = Meth; } /// Sets the used combination method for Possible Scores /// \param Meth a Pointer for the used Method. Predefined methods \c /// PossibleScoreCombinationMethodMin() \c PossibleScoreCombinationMethodMax() /// \c PossibleScoreCombinationMethodAverage() void setPossibleScoreCombinationMethod( std::vector (*Meth)(std::vector, ReliabilityType)) { PossibleScoreCombinationMethod = Meth; } /// sets the input reliability combinator method /// \param method the to be used method /// \note there are predefined methods \c combinationMin() \c combinationMax() /// \c combinationAverage() void setInputReliabilityCombinator( ReliabilityType (*method)(ReliabilityType, ReliabilityType)) { InputReliabilityCombinator = method; } // // ----------------predefined combinators------------------------------------ // /// predefined Method static ReliabilityType HistoryCombinatorMethodMin(ReliabilityType A, ReliabilityType B) { return std::min(A, B); } /// predefined Method static ReliabilityType HistoryCombinatorMethodMax(ReliabilityType A, ReliabilityType B) { return std::max(A, B); } /// predefined Method static ReliabilityType HistoryCombinatorMethodMult(ReliabilityType A, ReliabilityType B) { return A * B; } /// predefined Method static ReliabilityType HistoryCombinatorMethodAverage(ReliabilityType A, ReliabilityType B) { return (A + B) / 2; } /// predefined method static std::vector FeedbackCombinatorMethodAverage(std::vector A, std::vector B) { return average(A, B); } /// predefined method static std::vector FeedbackCombinatorMethodMin(std::vector A, std::vector B) { return min(A, B); } /// predefined method static std::vector FeedbackCombinatorMethodMax(std::vector A, std::vector B) { return max(A, B); } /// predefined method static std::vector FeedbackCombinatorMethodMult(std::vector A, std::vector B) { return mult(A, B); } /// Predefined combination method for possible Scores static std::vector PossibleScoreCombinationMethodMin(std::vector A, ReliabilityType B) { return min(A, B); } /// Predefined combination method for possible Scores static std::vector PossibleScoreCombinationMethodMax(std::vector A, ReliabilityType B) { return max(A, B); } /// Predefined combination method for possible Scores static std::vector PossibleScoreCombinationMethodAverage(std::vector A, ReliabilityType B) { return average(A, B); } /// Predefined combination method for possible Scores static std::vector PossibleScoreCombinationMethodMult(std::vector A, ReliabilityType B) { return mult(A, B); } /// The predefined min combinator method static ReliabilityType combinationMin(ReliabilityType A, ReliabilityType B) { return std::min(A, B); } /// The predefined max combinator method static ReliabilityType combinationMax(ReliabilityType A, ReliabilityType B) { return std::max(A, B); } /// The predefined average combinator method static ReliabilityType combinationAverage(ReliabilityType A, ReliabilityType B) { return (A + B) / 2; } /// The predefined average combinator method static ReliabilityType combinationMult(ReliabilityType A, ReliabilityType B) { return A * B; } private: std::vector> History; std::size_t HistoryMaxSize; std::vector ValuesFromMaster; SensorValueType previousSensorValue; unsigned int valueSetCounter; std::vector States; bool PreviousSensorValueExists = false; std::unique_ptr> Confidence; std::unique_ptr> Reliability; std::unique_ptr> ReliabilitySlope; std::unique_ptr> TimeConfidence; // combination functions ReliabilityType (*InputReliabilityCombinator)( ReliabilityType, ReliabilityType) = combinationMin; std::vector (*PossibleScoreCombinationMethod)( std::vector, ReliabilityType) = PossibleScoreCombinationMethodMin; std::vector (*FeedbackCombinatorMethod)(std::vector, std::vector) = FeedbackCombinatorMethodAverage; ReliabilityType (*HistoryCombinatorMethod)(ReliabilityType, ReliabilityType) = HistoryCombinatorMethodMax; /*--------------------------------- needed Functions * -----------------------------------------------------*/ /// returns the Reliability /// \param actualValue The Value of the Sensor /// \param lastValue of the Sensor this is stored in the class /// \param valueSetCounter It has an effect on the difference of the current /// and last value This might not be needed anymore /// \brief it returns the combination the \c Reliability function and \c /// ReliabilitySlope if the previous value exists. if it doesn't it only /// returns the \c Reliability function value. ReliabilityType getReliability(SensorValueType actualValue, SensorValueType lastValue, unsigned int valueSetCounter) { ReliabilityType relAbs = Reliability->operator()(actualValue); if (PreviousSensorValueExists) { ReliabilityType relSlo = ReliabilitySlope->operator()( (lastValue - actualValue) / (SensorValueType)valueSetCounter); return InputReliabilityCombinator(relAbs, relSlo); } else return relAbs; } /// adapts the possible Scores by checking the History and combines those /// values. currently with max /// \brief combines the historic values with the \c TimeConfidence function /// and returns the maximum Reliability for all Scores. std::vector getAllPossibleScoresBasedOnHistory() { // iterate through all history entries std::size_t posInHistory = 0; std::vector possibleScores; for (auto pShE = History.begin(); pShE < History.end(); pShE++, posInHistory++) { // iterate through all possible scores of each history entry for (ConfOrRel &pSh : *pShE) { StateType historyScore = pSh.score; ReliabilityType historyConf = pSh.Reliability; historyConf = historyConf * TimeConfidence->operator()(posInHistory); bool foundScore = false; for (ConfOrRel &pS : possibleScores) { if (pS.score == historyScore) { pS.Reliability = HistoryCombinatorMethod(pS.Reliability, historyConf); foundScore = true; } } if (foundScore == false) { ConfOrRel possibleScore; possibleScore.score = historyScore; possibleScore.Reliability = historyConf; possibleScores.push_back(possibleScore); } } } return possibleScores; } /// saves the Scores in the History /// \brief It checks the incoming scores if any have a Reliability greater /// than 0.5 all of them get saved inside the History and then the /// History get shortened to the maximal length. It only saves the Value if /// the History is empty. /// /// \param actualPossibleScores The Scores which should be saved /// /// \note Does the History really make sense if the values are to small it /// only stores something if it's empty and not if it isn't completely filled void saveInHistory(std::vector actualPossibleScores) { // check if the reliability of at least one possible score is high enough bool atLeastOneRelIsHigh = false; for (ConfOrRel pS : actualPossibleScores) { if (pS.Reliability > 0.5) { atLeastOneRelIsHigh = true; } } // save possible scores if at least one possible score is high enough (or if // the history is empty) if (History.size() < 1 || atLeastOneRelIsHigh == true) { History.insert(History.begin(), actualPossibleScores); // if history size is higher than allowed, save oldest element while (History.size() > HistoryMaxSize) { // delete possibleScoreHistory.back(); History.pop_back(); } } } }; } // namespace agent } // namespace rosa #endif // !ROSA_AGENT_RELIABILITY_H