diff --git a/include/rosa/agent/CrossCombinator.h b/include/rosa/agent/CrossCombinator.h index eafb2d0..4c279fe 100644 --- a/include/rosa/agent/CrossCombinator.h +++ b/include/rosa/agent/CrossCombinator.h @@ -1,551 +1,552 @@ //===-- rosa/delux/CrossCombinator.h ----------------------------*- C++ -*-===// // // The RoSA Framework // //===----------------------------------------------------------------------===// /// /// \file rosa/agent/CrossCombinator.h /// /// \author Daniel Schnoell /// /// \date 2019 /// \note based on Maximilian Goetzinger(maxgot @utu.fi) code in /// CAM_Dirty_include SA-EWS2_Version... inside Agent.cpp /// /// \brief /// /// \todo there is 1 exception that needs to be handled correctly. /// \note the default search function is extremely slow maybe this could be done /// via template for storage class and the functions/methods to efficiently find /// the correct LinearFunction //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_CROSSCOMBINATOR_H #define ROSA_AGENT_CROSSCOMBINATOR_H #include "rosa/agent/Abstraction.hpp" #include "rosa/agent/Functionality.h" #include "rosa/agent/ReliabilityConfidenceCombinator.h" #include "rosa/core/forward_declarations.h" // needed for id_t #include "rosa/support/log.h" // needed for error "handling" // nedded headers #include #include //assert #include // for static methods #include #include namespace rosa { namespace agent { template std::vector> &operator<<( std::vector> &me, std::vector> Values) { for (auto tmp : Values) { std::pair tmp2; tmp2.first = std::get<0>(tmp); tmp2.second = std::get<1>(tmp); me.push_back(tmp2); } return me; } /// This is the Combinator class for cross Reliabilities. It has many functions /// with different purposes /// \brief It takes the Identifiers and Reliabilities of all given ids and /// calculates the Reliability of them together. Also it can creates the /// feedback that is needed by the \c ReliabilityAndConfidenceCombinator, which /// is a kind of confidence. /// /// \tparam IdentifierType Data type of the Identifier ( Typically double /// or float) \tparam ReliabilityType Data type of the Reliability ( Typically /// long or int) /// /// \note This class is commonly in a master slave relationship as master with /// \c ReliabilityAndConfidenceCombinator. The \c operator()() combines the /// Reliability of all connected Slaves and uses that as its own Reliability /// also creates the feedback for the Slaves. /// /// \note more information about how the Reliability and feedback is /// created at \c operator()() , \c getCombinedCrossReliability() , \c /// getCombinedInputReliability() , \c getOutputReliability() [ this is the /// used Reliability ], \c getCrossConfidence() [ this is the feedback /// for all Slaves ] /// /// a bit more special Methods \c CrossConfidence() ,\c CrossReliability() template class CrossCombinator { public: static_assert(std::is_arithmetic::value, "HighLevel: IdentifierType has to be an arithmetic type\n"); static_assert(std::is_arithmetic::value, "HighLevel: ReliabilityType has to be an arithmetic type\n"); // --------------------------------------------------------------------------- // useful definitions // --------------------------------------------------------------------------- /// typedef To shorten the writing. /// \c ConfOrRel using ConfOrRel = ConfOrRel; /// To shorten the writing. using Abstraction = typename rosa::agent::Abstraction; /// The return type for the \c operator()() Method struct returnType { ReliabilityType CrossReliability; std::map> CrossConfidence; }; // ------------------------------------------------------------------------- // Relevant Methods // ------------------------------------------------------------------------- /// Calculates the Reliability and the CrossConfidences for each id for all /// of there Identifiers. /// /// \param Values It gets the Identifiers and Reliabilities of /// all connected Slaves inside a vector. /// /// \return it returns a struct \c returnType containing the \c /// getCombinedCrossReliability() and \c getCrossConfidence() returnType operator()( std::vector> Values) { return {getOutputReliability(Values), getCrossConfidence(Values)}; } /// returns the combined Cross Reliability via \c /// CombinedCrossRelCombinationMethod \c /// setCombinedCrossRelCombinationMethod() for all ids \c /// CrossReliability() \param Values the used Values ReliabilityType getCombinedCrossReliability( const std::vector> &Values) noexcept { ReliabilityType combinedCrossRel = -1; std::vector> Agents; Agents << Values; for (auto Value : Values) { id_t id = std::get<0>(Value); IdentifierType sc = std::get<1>(Value); // calculate the cross reliability for this slave agent ReliabilityType realCrossReliabilityOfSlaveAgent = CrossReliability({id, sc}, Agents); if (combinedCrossRel != -1) combinedCrossRel = CombinedCrossRelCombinationMethod( combinedCrossRel, realCrossReliabilityOfSlaveAgent); else combinedCrossRel = realCrossReliabilityOfSlaveAgent; } return combinedCrossRel; } /// returns the combined via \c CombinedInputRelCombinationMethod \c /// setCombinedInputRelCombinationMethod() input reliability \param Values /// the used Values ReliabilityType getCombinedInputReliability( const std::vector> &Values) noexcept { ReliabilityType combinedInputRel = -1; std::vector> Agents; Agents << Values; for (auto Value : Values) { ReliabilityType rel = std::get<2>(Value); if (combinedInputRel != -1) combinedInputRel = CombinedInputRelCombinationMethod(combinedInputRel, rel); else combinedInputRel = rel; } return combinedInputRel; } /// returns the combination via \c OutputReliabilityCombinationMethod \c /// setOutputReliabilityCombinationMethod() of the Cross reliability and /// input reliability \param Values the used Values ReliabilityType getOutputReliability( const std::vector> &Values) noexcept { return OutputReliabilityCombinationMethod( getCombinedInputReliability(Values), getCombinedCrossReliability(Values)); } /// returns the crossConfidence for all ids \c CrossConfidence() /// \param Values the used Values std::map> getCrossConfidence( const std::vector> &Values) noexcept { std::vector> Agents; std::map> output; std::vector output_temporary; Agents << Values; for (auto Value : Values) { id_t id = std::get<0>(Value); output_temporary.clear(); for (IdentifierType thoIdentifier : Identifiers[id]) { ConfOrRel data; data.Identifier = thoIdentifier; data.Reliability = CrossConfidence(id, thoIdentifier, Agents); output_temporary.push_back(data); } output.insert({id, output_temporary}); } return output; } /// Calculates the Cross Confidence /// \brief it uses the Identifier value and calculates /// the Confidence of a given agent( represented by their id ) for a given /// Identifiers in connection to all other given agents /// /// \note all combination of agents and there corresponding Cross Reliability /// function have to be specified ReliabilityType CrossConfidence(const id_t &MainAgent, const IdentifierType &TheoreticalValue, const std::vector> &SlaveAgents) noexcept { ReliabilityType crossReliabiability; std::vector values; for (std::pair SlaveAgent : SlaveAgents) { if (SlaveAgent.first == MainAgent) continue; if (TheoreticalValue == SlaveAgent.second) crossReliabiability = 1; else crossReliabiability = 1 / (crossReliabilityParameter * std::abs(TheoreticalValue - SlaveAgent.second)); // profile reliability ReliabilityType crossReliabilityFromProfile = getCrossReliabilityFromProfile( MainAgent, SlaveAgent.first, std::abs(TheoreticalValue - SlaveAgent.second)); values.push_back( std::max(crossReliabiability, crossReliabilityFromProfile)); } return Method(values); } /// Calculates the Cross Reliability /// \brief it uses the Identifier value and calculates /// the Reliability of a given agent( represented by their id ) in connection /// to all other given agents /// /// \note all combination of agents and there corresponding Cross Reliability /// function have to be specified ReliabilityType CrossReliability(const std::pair &MainAgent, const std::vector> &SlaveAgents) noexcept { ReliabilityType crossReliabiability; std::vector values; for (std::pair SlaveAgent : SlaveAgents) { if (SlaveAgent.first == MainAgent.first) continue; if (MainAgent.second == SlaveAgent.second) crossReliabiability = 1; else crossReliabiability = 1 / (crossReliabilityParameter * std::abs(MainAgent.second - SlaveAgent.second)); // profile reliability ReliabilityType crossReliabilityFromProfile = getCrossReliabilityFromProfile( MainAgent.first, SlaveAgent.first, std::abs(MainAgent.second - SlaveAgent.second)); values.push_back( std::max(crossReliabiability, crossReliabilityFromProfile)); } return Method(values); } // -------------------------------------------------------------------------- // Defining the class // -------------------------------------------------------------------------- /// adds a Cross Reliability Profile used to get the Reliability of the /// Identifier difference /// /// \param idA The id of the one \c Agent ( ideally the id of \c Unit to make /// it absolutely unique ) /// /// \param idB The id of the other \c Agent /// /// \param Function A shared pointer to an \c Abstraction it would use the /// difference in Identifier for its input void addCrossReliabilityProfile( const id_t &idA, const id_t &idB, const std::shared_ptr &Function) noexcept { Functions.push_back({true, idA, idB, Function}); } /// sets the cross reliability parameter void setCrossReliabilityParameter(const ReliabilityType &val) noexcept { crossReliabilityParameter = val; } /// This is the adder for the Identifiers /// \param id The id of the Agent of the Identifiers - /// \param Identifiers id specific Identifiers. This will be copied So that if + /// \param _Identifiers id specific Identifiers. This will be copied So that if /// Slaves have different Identifiers they can be used correctly. \brief The /// Identifiers of all connected slave Agents has to be known to be able to /// iterate over them - void addIdentifiers(const id_t &id, - const std::vector &Identifiers) noexcept { - this->Identifiers.insert({id, Identifiers}); + void + addIdentifiers(const id_t &id, + const std::vector &_Identifiers) noexcept { + Identifiers.insert({id, _Identifiers}); } // ------------------------------------------------------------------------- // Combinator Settings // ------------------------------------------------------------------------- /// sets the used method to combine the values /// \param Meth the method which should be used. predefined functions in the /// struct \c predefinedMethods \c /// CONJUNCTION() \c AVERAGE() \c DISJUNCTION() void setCrossReliabilityCombinatorMethod( const std::function values)> &Meth) noexcept { Method = Meth; } /// sets the combination method for the combined cross reliability /// \param Meth the method which should be used. predefined functions in the /// struct \c predefinedMethods CombinedCrossRelCombinationMethod() void setCombinedCrossRelCombinationMethod( const std::function &Meth) noexcept { CombinedCrossRelCombinationMethod = Meth; } /// sets the combined input rel method /// \param Meth the method which should be used. predefined functions in the /// struct \c predefinedMethods CombinedInputRelCombinationMethod() void setCombinedInputRelCombinationMethod( const std::function &Meth) noexcept { CombinedInputRelCombinationMethod = Meth; } /// sets the used OutputReliabilityCombinationMethod /// \param Meth the method which should be used. predefined functions in the /// struct \c predefinedMethods OutputReliabilityCombinationMethod() void setOutputReliabilityCombinationMethod( const std::function &Meth) noexcept { OutputReliabilityCombinationMethod = Meth; } // ------------------------------------------------------------------------- // Predefined Functions // ------------------------------------------------------------------------- /// This struct is a pseudo name space to have easier access to all predefined /// methods while still not overcrowding the class it self struct predefinedMethods { /// predefined combination method static ReliabilityType CONJUNCTION(std::vector values) { return *std::min_element(values.begin(), values.end()); } /// predefined combination method static ReliabilityType AVERAGE(std::vector values) { return std::accumulate(values.begin(), values.end(), 0.0) / values.size(); } /// predefined combination method static ReliabilityType DISJUNCTION(std::vector values) { return *std::max_element(values.begin(), values.end()); } /// predefined combination Method static ReliabilityType CombinedCrossRelCombinationMethodMin(ReliabilityType A, ReliabilityType B) { return std::min(A, B); } /// predefined combination Method static ReliabilityType CombinedCrossRelCombinationMethodMax(ReliabilityType A, ReliabilityType B) { return std::max(A, B); } /// predefined combination Method static ReliabilityType CombinedCrossRelCombinationMethodMult(ReliabilityType A, ReliabilityType B) { return A * B; } /// predefined combination Method static ReliabilityType CombinedCrossRelCombinationMethodAverage(ReliabilityType A, ReliabilityType B) { return (A + B) / 2; } /// predefined combination Method static ReliabilityType CombinedInputRelCombinationMethodMin(ReliabilityType A, ReliabilityType B) { return std::min(A, B); } /// predefined combination Method static ReliabilityType CombinedInputRelCombinationMethodMax(ReliabilityType A, ReliabilityType B) { return std::max(A, B); } /// predefined combination Method static ReliabilityType CombinedInputRelCombinationMethodMult(ReliabilityType A, ReliabilityType B) { return A * B; } /// predefined combination Method static ReliabilityType CombinedInputRelCombinationMethodAverage(ReliabilityType A, ReliabilityType B) { return (A + B) / 2; } /// predefined combination method static ReliabilityType OutputReliabilityCombinationMethodMin(ReliabilityType A, ReliabilityType B) { return std::min(A, B); } /// predefined combination method static ReliabilityType OutputReliabilityCombinationMethodMax(ReliabilityType A, ReliabilityType B) { return std::max(A, B); } /// predefined combination method static ReliabilityType OutputReliabilityCombinationMethodMult(ReliabilityType A, ReliabilityType B) { return A * B; } /// predefined combination method static ReliabilityType OutputReliabilityCombinationMethodAverage(ReliabilityType A, ReliabilityType B) { return (A + B) / 2; } }; // ------------------------------------------------------------------------- // Cleanup // ------------------------------------------------------------------------- ~CrossCombinator() { Functions.clear(); } // -------------------------------------------------------------------------- // Parameters // -------------------------------------------------------------------------- private: struct Functionblock { bool exists = false; id_t A; id_t B; std::shared_ptr Funct; }; std::map> Identifiers; /// From Maxi in his code defined as 1 can be changed by set ReliabilityType crossReliabilityParameter = 1; /// Stored Cross Reliability Functions std::vector Functions; /// Method which is used to combine the generated values std::function)> Method = predefinedMethods::AVERAGE; std::function CombinedCrossRelCombinationMethod = predefinedMethods::CombinedCrossRelCombinationMethodMin; std::function CombinedInputRelCombinationMethod = predefinedMethods::CombinedInputRelCombinationMethodMin; std::function OutputReliabilityCombinationMethod = predefinedMethods::OutputReliabilityCombinationMethodMin; //-------------------------------------------------------------------------------- // helper function /// very inefficient searchFunction Functionblock (*searchFunction)(std::vector vect, const id_t nameA, const id_t nameB) = [](std::vector vect, const id_t nameA, const id_t nameB) -> Functionblock { for (Functionblock tmp : vect) { if (tmp.A == nameA && tmp.B == nameB) return tmp; if (tmp.A == nameB && tmp.B == nameA) return tmp; } return Functionblock(); }; /// evaluates the corresponding LinearFunction with the Identifier difference /// \param nameA these two parameters are the unique identifiers /// \param nameB these two parameters are the unique identifiers /// for the LinerFunction /// /// \note it doesn't matter if they are swapped ReliabilityType getCrossReliabilityFromProfile( const id_t &nameA, const id_t &nameB, const IdentifierType &IdentifierDifference) noexcept { Functionblock block = searchFunction(Functions, nameA, nameB); if (!block.exists) { LOG_ERROR(("CrossReliability: Block:" + std::to_string(nameA) + "," + std::to_string(nameB) + "doesn't exist returning 0")); return 0; } return block.Funct->operator()(IdentifierDifference); } }; } // End namespace agent } // End namespace rosa #endif // ROSA_AGENT_CROSSCOMBINATOR_H \ No newline at end of file diff --git a/include/rosa/agent/FunctionAbstractions.hpp b/include/rosa/agent/FunctionAbstractions.hpp index 2fa6912..b0c1ce4 100644 --- a/include/rosa/agent/FunctionAbstractions.hpp +++ b/include/rosa/agent/FunctionAbstractions.hpp @@ -1,364 +1,364 @@ //===-- rosa/agent/FunctionAbstractions.hpp ---------------------*- C++ -*-===// // // The RoSA Framework // // Distributed under the terms and conditions of the Boost Software License 1.0. // See accompanying file LICENSE. // // If you did not receive a copy of the license file, see // http://www.boost.org/LICENSE_1_0.txt. // //===----------------------------------------------------------------------===// /// /// \file rosa/agent/FunctionAbstractions.hpp /// /// \author Benedikt Tutzer (benedikt.tutzer@tuwien.ac.at) /// /// \date 2019 /// /// \brief Definition of *FunctionAbstractions* *functionality*. /// //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_FUNCTIONABSTRACTIONS_HPP #define ROSA_AGENT_FUNCTIONABSTRACTIONS_HPP #include "rosa/agent/Abstraction.hpp" #include "rosa/agent/Functionality.h" #include "rosa/support/debug.hpp" #include #include #include #include namespace rosa { namespace agent { /// Implements \c rosa::agent::Abstraction as a linear function, /// y = Coefficient * X + Intercept. /// /// \note This implementation is supposed to be used to represent a linear /// function from an arithmetic domain to an arithmetic range. This is enforced /// statically. /// /// \tparam D type of the functions domain /// \tparam R type of the functions range template class LinearFunction : public Abstraction { // Make sure the actual type arguments are matching our expectations. STATIC_ASSERT((std::is_arithmetic::value), "LinearFunction not arithmetic T"); STATIC_ASSERT((std::is_arithmetic::value), "LinearFunction not to arithmetic"); protected: /// The Intercept of the linear function - const D Intercept; + const R Intercept; /// The Coefficient of the linear function - const D Coefficient; + const R Coefficient; public: /// Creates an instance given the intercept and the coefficient of a linear /// function. /// /// \param Intercept the intercept of the linear function /// \param Coefficient the coefficient of the linear function - LinearFunction(D Intercept, D Coefficient) noexcept + LinearFunction(R Intercept, R Coefficient) noexcept : Abstraction(Intercept), Intercept(Intercept), Coefficient(Coefficient) {} /// Creates an instance given the two points on a linear function. /// /// \param x1 The x-value of the first point /// \param y1 The x-value of the first point /// \param x2 The y-value of the second point /// \param y2 The y-value of the second point LinearFunction(D x1, R y1, D x2, R y2) noexcept : Abstraction(y1 - x1 * (y1 - y2) / (x1 - x2), (y1 - y2) / (x1 - x2)) {} /// Creates an instance given the two points on a linear function. /// /// \param p1 The coordinates of the first point /// \param p2 The coordinates of the second point LinearFunction(std::pair p1, std::pair p2) noexcept : LinearFunction(p1.first, p1.second, p2.first, p2.second) {} /// Destroys \p this object. ~LinearFunction(void) = default; /// Checks wether the Abstraction evaluates to default at the given position /// As LinearFunctions can be evaluated everythwere, this is always false /// /// \param V the value at which to check if the function falls back to it's /// default value. /// /// \return false bool isDefaultAt(const D &V) const noexcept override { (void)V; return false; } /// Getter for member variable Intercept /// /// \return Intercept D getIntercept() const { return Intercept; } /// Setter for member variable Intercept /// /// \param Intercept the new Intercept void setIntercept(const D &Intercept) { this->Intercept = Intercept; } /// Getter for member variable Coefficient /// /// \return Coefficient D getCoefficient() const { return Coefficient; } /// Setter for member variable Coefficient /// /// \param Coefficient the new Intercept void setCoefficient(const D &Coefficient) { this->Coefficient = Coefficient; } /// Set Intercept and Coefficient from two points on the linear function /// /// \param x1 The x-value of the first point /// \param y1 The x-value of the first point /// \param x2 The y-value of the second point /// \param y2 The y-value of the second point void setFromPoints(D x1, R y1, D x2, R y2) { Coefficient = (y1 - y2) / (x1 - x2); Intercept = y1 - Coefficient * x1; } /// Set Intercept and Coefficient from two points on the linear function /// /// \param p1 The coordinates of the first point /// \param p2 The coordinates of the second point inline void setFromPoints(std::pair p1, std::pair p2) { setFromPoints(p1.first, p1.second, p2.first, p2.second); } /// Evaluates the linear function /// /// \param X the value at which to evaluate the function /// /// \return Coefficient*X + Intercept virtual R operator()(const D &X) const noexcept override { return Intercept + X * Coefficient; } }; /// Implements \c rosa::agent::Abstraction as a sine function, /// y = Amplitude * sin(Frequency * X + Phase) + Average. /// /// \note This implementation is supposed to be used to represent a sine /// function from an arithmetic domain to an arithmetic range. This is enforced /// statically. /// /// \tparam D type of the functions domain /// \tparam R type of the functions range template class SineFunction : public Abstraction { // Make sure the actual type arguments are matching our expectations. STATIC_ASSERT((std::is_arithmetic::value), "SineFunction not arithmetic T"); STATIC_ASSERT((std::is_arithmetic::value), "SineFunction not to arithmetic"); protected: /// The frequency of the sine wave const D Frequency; /// The Ampiltude of the sine wave const D Amplitude; /// The Phase-shift of the sine wave const D Phase; /// The y-shift of the sine wave const D Average; public: /// Creates an instance. /// /// \param Frequency the frequency of the sine wave /// \param Amplitude the amplitude of the sine wave /// \param Phase the phase of the sine wave /// \param Average the average of the sine wave SineFunction(D Frequency, D Amplitude, D Phase, D Average) noexcept : Abstraction(Average), Frequency(Frequency), Amplitude(Amplitude), Phase(Phase), Average(Average) {} /// Destroys \p this object. ~SineFunction(void) = default; /// Checks wether the Abstraction evaluates to default at the given position /// As SineFunctions can be evaluated everythwere, this is always false /// /// \param V the value at which to check if the function falls back to it's /// default value. /// /// \return false bool isDefaultAt(const D &V) const noexcept override { (void)V; return false; } /// Evaluates the sine function /// /// \param X the value at which to evaluate the function /// \return the value of the sine-function at X virtual R operator()(const D &X) const noexcept override { return Amplitude * sin(Frequency * X + Phase) + Average; } }; enum StepDirection { StepUp, StepDown }; /// Implements \c rosa::agent::PartialFunction as a step function from 0 to 1 /// with a ramp in between /// /// \tparam D type of the functions domain /// \tparam R type of the functions range template class StepFunction : public Abstraction { // Make sure the actual type arguments are matching our expectations. STATIC_ASSERT((std::is_arithmetic::value), "abstracting not arithmetic"); STATIC_ASSERT((std::is_arithmetic::value), "abstracting not to arithmetic"); private: D Coefficient; D RightLimit; StepDirection Direction; public: /// Creates an instance by Initializing the underlying \c Abstraction. /// /// \param Coefficient Coefficient of the ramp /// \param Direction wether to step up or down /// /// \pre Coefficient > 0 StepFunction(D Coefficient, StepDirection Direction = StepUp) : Abstraction(0), Coefficient(Coefficient), RightLimit(1.0f / Coefficient), Direction(Direction) { ASSERT(Coefficient > 0); } /// Destroys \p this object. ~StepFunction(void) = default; /// Setter for Coefficient /// /// \param Coefficient the new Coefficient void setCoefficient(const D &Coefficient) { ASSERT(Coefficient > 0); this->Coefficient = Coefficient; this->RightLimit = 1 / Coefficient; } /// Setter for RightLimit /// /// \param RightLimit the new RightLimit void setRightLimit(const D &RightLimit) { ASSERT(RightLimit > 0); this->RightLimit = RightLimit; this->Coefficient = 1 / RightLimit; } /// Checks wether the Abstraction evaluates to default at the given position /// /// \param V the value at which to check if the function falls back to it's /// default value. /// /// \return false if the is negative, true otherwise bool isDefaultAt(const D &V) const noexcept override { return V > 0; } /// Executes the Abstraction /// /// \param V value to abstract /// /// \return the abstracted value R operator()(const D &V) const noexcept override { R ret = 0; if (V <= 0) ret = 0; else if (V >= RightLimit) ret = 1; else ret = V * Coefficient; return Direction == StepDirection::StepUp ? ret : 1 - ret; } }; /// Implements \c rosa::agent::Abstraction as a partial function from a domain /// to a range. /// /// \note This implementation is supposed to be used to represent a partial /// function from an arithmetic domain to an arithmetic range. This is enforced /// statically. /// /// A partial function is defined as a list of abstractions, where each /// abstraction is associated a range in which it is defined. These ranges must /// be mutually exclusive. /// /// \tparam D type of the functions domain /// \tparam R type of the functions range template class PartialFunction : public Abstraction { // Make sure the actual type arguments are matching our expectations. STATIC_ASSERT((std::is_arithmetic::value), "abstracting not arithmetic"); STATIC_ASSERT((std::is_arithmetic::value), "abstracting not to arithmetic"); private: /// A \c rosa::agent::RangeAbstraction RA is used to represent the association /// from ranges to Abstractions. /// This returns the Abstraction that is defined for any given value, or /// a default Abstraction if no Abstraction is defined for that value. RangeAbstraction>> RA; public: /// Creates an instance by Initializing the underlying \c Abstraction. /// /// \param Map the mapping to do abstraction according to /// \param Default abstraction to abstract to by default /// /// \pre Each key defines a valid range such that `first <= second` and /// there are no overlapping ranges defined by the keys. PartialFunction( const std::map, std::shared_ptr>> &Map, const R Default) : Abstraction(Default), RA(Map, std::shared_ptr>(new Abstraction(Default))) { } /// Destroys \p this object. ~PartialFunction(void) = default; /// Checks wether the Abstraction evaluates to default at the given position /// /// \param V the value at which to check if the function falls back to it's /// default value. /// /// \return false if the value falls into a defined range and the Abstraction /// defined for that range does not fall back to it's default value. bool isDefaultAt(const D &V) const noexcept override { return RA.isDefaultAt(V) ? true : RA(V)->isDefaultAt(V); } /// Searches for an Abstraction for the given value and executes it for that /// value, if such an Abstraction is found. The default Abstraction is /// evaluated otherwise. /// /// \param V value to abstract /// /// \return the abstracted value based on the set mapping R operator()(const D &V) const noexcept override { return RA(V)->operator()(V); } }; } // End namespace agent } // End namespace rosa #endif // ROSA_AGENT_FUNCTIONABSTRACTIONS_HPP diff --git a/include/rosa/agent/ReliabilityConfidenceCombinator.h b/include/rosa/agent/ReliabilityConfidenceCombinator.h index 1d22046..bfc3f62 100644 --- a/include/rosa/agent/ReliabilityConfidenceCombinator.h +++ b/include/rosa/agent/ReliabilityConfidenceCombinator.h @@ -1,755 +1,755 @@ //===-- rosa/agent/ReliabilityConfidenceCombinator.h ------------*- C++ -*-===// // // The RoSA Framework // //===----------------------------------------------------------------------===// /// /// \file rosa/agent/ReliabilityConfidenceCombinator.h /// /// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at) /// /// \date 2019 /// /// \brief Definition of *ReliabilityConfidenceCombinator* *functionality*. /// /// \note based on Maximilian Goetzinger (maxgot@utu.fi) code in /// CAM_Dirty_include SA-EWS2_Version... inside Agent.cpp /// /// \note By defining and setting Reliability_trace_level it is possible to /// change the level to which it should be traced. \note All classes throw /// runtime errors if not all things are set /// /// \note should the Reliability be capped? /// /// //===----------------------------------------------------------------------===// #ifndef ROSA_AGENT_ReliabilityConfidenceCombinator_H #define ROSA_AGENT_ReliabilityConfidenceCombinator_H #include "rosa/core/forward_declarations.h" // needed for id_t #include "rosa/support/log.h" #include "rosa/agent/FunctionAbstractions.hpp" #include "rosa/agent/Functionality.h" #include "rosa/agent/RangeConfidence.hpp" #include #include #include #include /// 0 everything /// 1 vectors /// 2 outputs #define trace_everything 0 #define trace_vectors 1 #define trace_outputs 2 #ifndef Reliability_trace_level #define Reliability_trace_level 0 #endif #define trace_end "\n\n\n" namespace rosa { namespace agent { /// This is a struct with a few methods that make Reliability Combinator /// more readable \tparam IdentifierType The Data-type of the States \tparam /// ReliabilityType The Data-type of the Reliability /// \note this should/will be changed into a std::pair because it isn't needed /// anymore template struct ConfOrRel { /// making both Template Arguments readable to make a few things easier using _IdentifierType = IdentifierType; /// making both Template Arguments readable to make a few things easier using _ReliabilityType = ReliabilityType; /// The actual place where the data is stored IdentifierType Identifier; /// The actual place where the data is stored ReliabilityType Reliability; ConfOrRel(IdentifierType _Identifier, ReliabilityType _Reliability) : Identifier(_Identifier), Reliability(_Reliability){}; ConfOrRel(){}; /// Pushes the Data in a Human readable form /// \param out The stream where it is written to /// \param c The struct itself friend std::ostream &operator<<(std::ostream &out, const ConfOrRel &c) { out << "Identifier: " << c.Identifier << "\t Reliability: " << c.Reliability << " "; return out; } /// needed or it throws an clang diagnosic error using map = std::map; // needed or it throws an // clang diagnosic error /// Filles the vector with the data inside the map /// \param me The vector to be filled /// \param data The data wich is to be pushed into the vector friend std::vector &operator<<(std::vector &me, map &&data) { for (auto tmp : data) { me.push_back(ConfOrRel(tmp.first, tmp.second)); #if Reliability_trace_level <= trace_everything LOG_TRACE_STREAM << "\n" << ConfOrRel(tmp.first, tmp.second) << trace_end; #endif } return me; } /// This is to push the data inside a vector in a human readable way into the /// ostream \param out The ostream \param c The vector which is read friend std::ostream &operator<<(std::ostream &out, const std::vector &c) { std::size_t index = 0; for (ConfOrRel data : c) { out << index << " : " << data << "\n"; index++; } return out; } }; /// This is the combinator for Reliability and confidences it takes the /// Sensor value, its "History" and feedback from \c /// CrossCombinator to calculate different Reliabilities. /// \tparam SensorValueType Data-type of the Sensor value ( Typically /// double or float) \tparam IdentifierType Data-type of the State ( Typically /// long or int) /// \tparam ReliabilityType Data-type of the Reliability ( /// Typically double or float) /// /// \note more information about how it calculates /// the Reliabilities it should be considered feedback is a sort of Confidence /// \verbatim ///---------------------------------------------------------------------------------- /// /// /// ->Reliability---> getInputReliability() /// | | /// | V /// Sensor Value ---| PossibleIdentifierCombinationMethod -> next line /// | A | /// | | V /// ->Confidence--- getPossibleIdentifiers() /// ///----------------------------------------------------------------------------------- /// /// feedback /// | /// V /// ValuesFromMaster /// | -> History ---| /// V | V /// here -> FeedbackCombinatorMethod -------->HistoryCombinatorMethod->next line /// | | /// V V /// getpossibleIdentifiersWithMasterFeedback()getPossibleIdentifiersWithHistory() /// ///---------------------------------------------------------------------------------- /// /// here -> sort -> most likely -> getmostLikelyIdentifierAndReliability() /// ///--------------------------------------------------------------------------------- /// \endverbatim /// the mentioned methods are early outs so if two ore more of them are run in /// the same step they will be interpreted as different time steps ///
 /// Default values for Combinators:
 ///	InputReliabilityCombinator		= combinationMin;
 ///	PossibleIdentifierCombinationMethod=PossibleIdentifierCombinationMethodMin;
 /// FeedbackCombinatorMethod		= FeedbackCombinatorMethodAverage;
 /// HistoryCombinatorMethod			= HistoryCombinatorMethodMax;
 ///	
/// To understand the place where the combinator methods come into play a list /// for each early exit and which Methods are used. /// ///
 /// \c getInputReliability():
 ///		-InputReliabilityCombinator
 /// \c getPossibleIdentifiers():
 ///		-InputReliabilityCombinator
 ///		-PossibleIdentifierCombinationMethod
 /// \c getpossibleIdentifiersWithMasterFeedback():
 ///		-InputReliabilityCombinator
 ///		-PossibleIdentifierCombinationMethod
 ///		-FeedbackCombinatorMethod
 /// \c getPossibleIdentifiersWithHistory():
 ///		-InputReliabilityCombinator
 ///		-PossibleIdentifierCombinationMethod
 ///		-FeedbackCombinatorMethod
 ///		-HistoryCombinatorMethod
 /// \c getmostLikelyIdentifierAndReliability():
 ///		-InputReliabilityCombinator
 ///		-PossibleIdentifierCombinationMethod
 ///		-FeedbackCombinatorMethod
 ///		-HistoryCombinatorMethod
 /// 
template class ReliabilityAndConfidenceCombinator { public: static_assert(std::is_arithmetic::value, "LowLevel: SensorValueType has to an arithmetic type\n"); static_assert(std::is_arithmetic::value, "LowLevel: IdentifierType has to an arithmetic type\n"); static_assert(std::is_arithmetic::value, "LowLevel: ReliabilityType has to an arithmetic type\n"); /// Typedef to shorten the writing. /// \c ConfOrRel using ConfOrRel = ConfOrRel; /// Calculates the input Reliability by combining Reliability of the Sensor /// and the Slope Reliability \param SensorValue The sensor Value \note to set /// the combination method \c setInputReliabilityCombinator() ReliabilityType getInputReliability(const SensorValueType &SensorValue) noexcept { ReliabilityType inputReliability = getReliability(SensorValue, previousSensorValue, valueSetCounter); previousSensorValue = SensorValue; PreviousSensorValueExists = true; return inputReliability; } /// Calculates the possible Identifiers /// \param SensorValue the Sensor Value /// \brief it combines the input reliability and the confidence of the Sensor. /// The use combination method can be set using \c /// setPossibleIdentifierCombinationMethod() std::vector getPossibleIdentifiers(const SensorValueType &SensorValue) noexcept { std::vector possibleIdentifiers; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleIdentifiers << Confidence->operator()(SensorValue); possibleIdentifiers = PossibleIdentifierCombinationMethod( possibleIdentifiers, inputReliability); return possibleIdentifiers; } /// return the Possible Values with the feedback in mind /// \param SensorValue The sensor Value /// \brief it combines the input reliability and the confidence of the Sensor. /// The combines them with FeedbackCombinatorMethod and returns the result. std::vector getpossibleIdentifiersWithMasterFeedback( const SensorValueType &SensorValue) noexcept { std::vector possibleIdentifiers; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleIdentifiers << Confidence->operator()(SensorValue); possibleIdentifiers = PossibleIdentifierCombinationMethod( possibleIdentifiers, inputReliability); possibleIdentifiers = FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster); return possibleIdentifiers; } /// returns all possible Identifiers and Reliabilities with the History in /// mind \param SensorValue the Sensor value how this is done is described at /// the class. std::vector getPossibleIdentifiersWithHistory( const SensorValueType &SensorValue) noexcept { std::vector ActuallPossibleIdentifiers; std::vector possibleIdentifiers; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleIdentifiers << Confidence->operator()(SensorValue); possibleIdentifiers = PossibleIdentifierCombinationMethod( possibleIdentifiers, inputReliability); possibleIdentifiers = FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster); saveInHistory(possibleIdentifiers); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n" << possibleIdentifiers << trace_end; LOG_TRACE_STREAM << "\npossibleIdentifiers:\n" << possibleIdentifiers << trace_end; #endif possibleIdentifiers.clear(); return getAllPossibleIdentifiersBasedOnHistory(); } /// Calculates the Reliability /// \param SensorValue The current Values of the Sensor /// /// \return Reliability and Identifier of the current SensorValue /// ConfOrRel getmostLikelyIdentifierAndReliability( const SensorValueType &SensorValue) noexcept { #if Reliability_trace_level <= trace_outputs LOG_TRACE_STREAM << "\nTrace level is set to: " << Reliability_trace_level << "\n" << "Will trace: " << ((Reliability_trace_level == trace_outputs) ? "outputs" : (Reliability_trace_level == trace_vectors) ? "vectors" : (Reliability_trace_level == trace_everything) ? "everything" : "undefined") << trace_end; #endif std::vector ActuallPossibleIdentifiers; std::vector possibleIdentifiers; ReliabilityType inputReliability = getInputReliability(SensorValue); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end; #endif possibleIdentifiers << Confidence->operator()(SensorValue); possibleIdentifiers = PossibleIdentifierCombinationMethod( possibleIdentifiers, inputReliability); possibleIdentifiers = FeedbackCombinatorMethod(possibleIdentifiers, ValuesFromMaster); saveInHistory(possibleIdentifiers); #if Reliability_trace_level <= trace_vectors LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n" << possibleIdentifiers << trace_end; LOG_TRACE_STREAM << "\npossibleIdentifiers:\n" << possibleIdentifiers << trace_end; #endif possibleIdentifiers.clear(); possibleIdentifiers = getAllPossibleIdentifiersBasedOnHistory(); std::sort(possibleIdentifiers.begin(), possibleIdentifiers.end(), [](ConfOrRel A, ConfOrRel B) -> bool { return A.Reliability > B.Reliability; }); #if Reliability_trace_level <= trace_outputs LOG_TRACE_STREAM << "\noutput lowlevel: " << possibleIdentifiers.at(0) << trace_end; #endif return possibleIdentifiers.at(0); } /// feedback for this functionality most commonly it comes from a Master Agent - /// \param ValuesFromMaster The Identifiers + Reliability for the feedback + /// \param _ValuesFromMaster The Identifiers + Reliability for the feedback /// \brief This input kind of resembles a confidence but not /// directly it more or less says: compared to the other Identifiers inside /// the System these are the Identifiers with the Reliability that you have. void feedback( const std::vector - &ValuesFromMaster) noexcept // it is being copied internally anyway + &_ValuesFromMaster) noexcept // it is being copied internally anyway { - this->ValuesFromMaster = ValuesFromMaster; + ValuesFromMaster = _ValuesFromMaster; } // // ----------------------Reliability and Confidence Function setters---------- // /// This is the setter for Confidence Function - /// \param Confidence A pointer to the Functional for the \c Confidence of the + /// \param _Confidence A pointer to the Functional for the \c Confidence of the /// Sensor value void setConfidenceFunction( std::shared_ptr> &Confidence) noexcept { - this->Confidence = Confidence; + SensorValueType>> &_Confidence) noexcept { + Confidence = _Confidence; } /// This is the setter for Reliability Function - /// \param Reliability A pointer to the Functional for the Reliability + /// \param _Reliability A pointer to the Functional for the Reliability /// \brief The Reliability takes the current Sensor value and return the /// Reliability of the value. void setReliabilityFunction( std::shared_ptr> - &Reliability) noexcept { - this->Reliability = Reliability; + &_Reliability) noexcept { + Reliability = _Reliability; } /// This is the setter for ReliabilitySlope Function - /// \param ReliabilitySlope A pointer to the Functional for the + /// \param _ReliabilitySlope A pointer to the Functional for the /// ReliabilitySlope /// \brief The ReliabilitySlope takes the difference of the current Sensor /// Value to the last one and tells you how likely the change is. void setReliabilitySlopeFunction( std::shared_ptr> - &ReliabilitySlope) noexcept { - this->ReliabilitySlope = ReliabilitySlope; + &_ReliabilitySlope) noexcept { + ReliabilitySlope = _ReliabilitySlope; } /// This is the setter for TimeConfidence Function - /// \param TimeConfidence A pointer to the Functional for the TimeConfidence + /// \param _TimeConfidence A pointer to the Functional for the TimeConfidence /// \brief The time function takes the position in the History with greater /// equals older and return a Reliability of how "relevant" it is. void setTimeConfidenceFunction( std::shared_ptr> - &TimeConfidence) noexcept { - this->TimeConfidence = TimeConfidence; + &_TimeConfidence) noexcept { + TimeConfidence = _TimeConfidence; } /// This is the setter for all possible States /// \param states A vector containing all states /// \brief This exists even though \c State Type is an arithmetic Type because /// the states do not need to be "next" to each other ( ex. states={ 1 7 24 }) void setStates(const std::vector &states) noexcept { this->States = states; } /// This sets the Maximum length of the History /// \param length The length void setHistoryLength(const std::size_t &length) noexcept { this->HistoryMaxSize = length; } /// This sets the Value set Counter /// \param ValueSetCounter the new Value /// \note This might actually be only an artifact. It is only used to get the /// reliability from the \c ReliabilitySlope [ ReliabilitySlope->operator()( /// (lastValue - actualValue) / (SensorValueType)valueSetCounter) ] void setValueSetCounter(const unsigned int &ValueSetCounter) noexcept { this->valueSetCounter = ValueSetCounter; } // // ----------------combinator setters----------------------------------------- // /// This sets the combination method used by the History /// \param Meth the method which should be used. predefined inside the \c /// predefinedMethods struct HistoryCombinatorMethod() void setHistoryCombinatorMethod( const std::function &Meth) noexcept { HistoryCombinatorMethod = Meth; } /// sets the predefined method for the combination of the possible Identifiers /// and the master /// \param Meth the method which should be used. predefined inside the \c /// predefinedMethods struct FeedbackCombinatorMethod() void setFeedbackCombinatorMethod( const std::function( std::vector, std::vector)> &Meth) noexcept { FeedbackCombinatorMethod = Meth; } /// Sets the used combination method for Possible Identifiers /// \param Meth the method which should be used. predefined inside the \c /// predefinedMethods struct PossibleIdentifierCombinationMethod() void setPossibleIdentifierCombinationMethod( const std::function( std::vector, ReliabilityType)> &Meth) noexcept { PossibleIdentifierCombinationMethod = Meth; } /// sets the input reliability combinator method /// \param method the method which should be used. predefined inside the \c /// predefinedMethods struct combination() void setInputReliabilityCombinator( const std::function &&method) noexcept { InputReliabilityCombinator = method; } // // ----------------predefined combinators------------------------------------ // /// This struct is a pseudo name space to have easier access to all predefined /// methods while still not overcrowding the class it self struct predefinedMethods { /// predefined Method static ReliabilityType HistoryCombinatorMethodMin(ReliabilityType A, ReliabilityType B) noexcept { return std::min(A, B); } /// predefined Method static ReliabilityType HistoryCombinatorMethodMax(ReliabilityType A, ReliabilityType B) noexcept { return std::max(A, B); } /// predefined Method static ReliabilityType HistoryCombinatorMethodMult(ReliabilityType A, ReliabilityType B) noexcept { return A * B; } /// predefined Method static ReliabilityType HistoryCombinatorMethodAverage(ReliabilityType A, ReliabilityType B) noexcept { return (A + B) / 2; } /// predefined method static std::vector FeedbackCombinatorMethodAverage(std::vector A, std::vector B) noexcept { for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Reliability = (tmp_me.Reliability + tmp_other.Reliability) / 2; } } return A; } /// predefined method static std::vector FeedbackCombinatorMethodMin(std::vector A, std::vector B) noexcept { for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Reliability = std::min(tmp_me.Reliability + tmp_other.Reliability); } } return A; } /// predefined method static std::vector FeedbackCombinatorMethodMax(std::vector A, std::vector B) noexcept { for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Reliability = std::max(tmp_me.Reliability + tmp_other.Reliability); } } return A; } /// predefined method static std::vector FeedbackCombinatorMethodMult(std::vector A, std::vector B) noexcept { for (auto &tmp_me : A) for (auto &tmp_other : B) { if (tmp_me.Identifier == tmp_other.Identifier) { tmp_me.Reliability = tmp_me.Reliability * tmp_other.Reliability; } } return A; } /// Predefined combination method for possible Identifiers static std::vector PossibleIdentifierCombinationMethodMin(std::vector A, ReliabilityType B) noexcept { for (auto tmp : A) tmp.Reliability = std::min(tmp.Reliability, B); return A; } /// Predefined combination method for possible Identifiers static std::vector PossibleIdentifierCombinationMethodMax(std::vector A, ReliabilityType B) noexcept { for (auto tmp : A) tmp.Reliability = std::max(tmp.Reliability, B); return A; } /// Predefined combination method for possible Identifiers static std::vector PossibleIdentifierCombinationMethodAverage(std::vector A, ReliabilityType B) noexcept { for (auto tmp : A) tmp.Reliability = (tmp.Reliability + B) / 2; return A; } /// Predefined combination method for possible Identifiers static std::vector PossibleIdentifierCombinationMethodMult(std::vector A, ReliabilityType B) noexcept { for (auto tmp : A) tmp.Reliability = tmp.Reliability * B / 2; return A; } /// The predefined min combinator method static ReliabilityType combinationMin(ReliabilityType A, ReliabilityType B) noexcept { return std::min(A, B); } /// The predefined max combinator method static ReliabilityType combinationMax(ReliabilityType A, ReliabilityType B) noexcept { return std::max(A, B); } /// The predefined average combinator method static ReliabilityType combinationAverage(ReliabilityType A, ReliabilityType B) noexcept { return (A + B) / 2; } /// The predefined average combinator method static ReliabilityType combinationMult(ReliabilityType A, ReliabilityType B) noexcept { return A * B; } }; // ---------------------------------------------------------------- // Stored Values // ---------------------------------------------------------------- private: std::vector> History; std::size_t HistoryMaxSize; std::vector ValuesFromMaster; SensorValueType previousSensorValue; unsigned int valueSetCounter; std::vector States; bool PreviousSensorValueExists = false; std::shared_ptr< RangeConfidence> Confidence; std::shared_ptr> Reliability; std::shared_ptr> ReliabilitySlope; std::shared_ptr> TimeConfidence; // combination functions std::function InputReliabilityCombinator = predefinedMethods::combinationMin; std::function(std::vector, ReliabilityType)> PossibleIdentifierCombinationMethod = predefinedMethods::PossibleIdentifierCombinationMethodMin; std::function(std::vector, std::vector)> FeedbackCombinatorMethod = predefinedMethods::FeedbackCombinatorMethodAverage; std::function HistoryCombinatorMethod = predefinedMethods::HistoryCombinatorMethodMax; // --------------------------------------------------------------------------- // needed Functions // --------------------------------------------------------------------------- /// returns the Reliability /// \param actualValue The Value of the Sensor /// \param lastValue of the Sensor this is stored in the class - /// \param valueSetCounter It has an effect on the difference of the current + /// \param _valueSetCounter It has an effect on the difference of the current /// and last value This might not be needed anymore /// \brief it returns the combination the \c Reliability function and \c /// ReliabilitySlope if the previous value exists. if it doesn't it only /// returns the \c Reliability function value. ReliabilityType getReliability(const SensorValueType &actualValue, const SensorValueType &lastValue, - const unsigned int &valueSetCounter) noexcept { + const unsigned int &_valueSetCounter) noexcept { ReliabilityType relAbs = Reliability->operator()(actualValue); if (PreviousSensorValueExists) { ReliabilityType relSlo = ReliabilitySlope->operator()( - (lastValue - actualValue) / (SensorValueType)valueSetCounter); + (lastValue - actualValue) / (SensorValueType)_valueSetCounter); return InputReliabilityCombinator(relAbs, relSlo); } else return relAbs; } /// adapts the possible Identifiers by checking the History and combines those /// values. /// \brief combines the historic values with the \c TimeConfidence function /// and returns the maximum Reliability for all Identifiers. std::vector getAllPossibleIdentifiersBasedOnHistory() noexcept { // iterate through all history entries std::size_t posInHistory = 0; std::vector possibleIdentifiers; for (auto pShE = History.begin(); pShE < History.end(); pShE++, posInHistory++) { // iterate through all possible Identifiers of each history entry for (ConfOrRel &pSh : *pShE) { IdentifierType historyIdentifier = pSh.Identifier; ReliabilityType historyConf = pSh.Reliability; historyConf = historyConf * TimeConfidence->operator()(posInHistory); bool foundIdentifier = false; for (ConfOrRel &pS : possibleIdentifiers) { if (pS.Identifier == historyIdentifier) { pS.Reliability = HistoryCombinatorMethod(pS.Reliability, historyConf); foundIdentifier = true; } } if (foundIdentifier == false) { ConfOrRel possibleIdentifier; possibleIdentifier.Identifier = historyIdentifier; possibleIdentifier.Reliability = historyConf; possibleIdentifiers.push_back(possibleIdentifier); } } } return possibleIdentifiers; } /// saves the Identifiers in the History /// \brief It checks the incoming Identifiers if any have a Reliability /// greater than 0.5 all of them get saved inside the History and then the /// History get shortened to the maximal length. It only saves the Value if /// the History is empty. /// /// \param actualPossibleIdentifiers The Identifiers which should be saved /// /// \note Does the History really make sense if the values are to small it /// only stores something if it's empty and not if it isn't completely filled void saveInHistory( const std::vector &actualPossibleIdentifiers) noexcept { // check if the reliability of at least one possible Identifier is high // enough bool atLeastOneRelIsHigh = false; for (ConfOrRel pS : actualPossibleIdentifiers) { if (pS.Reliability > 0.5) { atLeastOneRelIsHigh = true; } } // save possible Identifiers if at least one possible Identifier is high // enough (or if the history is empty) if (History.size() < 1 || atLeastOneRelIsHigh == true) { History.insert(History.begin(), actualPossibleIdentifiers); // if history size is higher than allowed, save oldest element while (History.size() > HistoryMaxSize) { // delete possibleIdentifierHistory.back(); History.pop_back(); } } } }; } // namespace agent } // namespace rosa #endif // !ROSA_AGENT_ReliabilityConfidenceCombinator_H