Page Menu
Home
Phorge
Search
Configure Global Search
Log In
Files
F561941
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Size
62 KB
Referenced Files
None
Subscribers
None
View Options
diff --git a/include/rosa/agent/CrossCombinator.h b/include/rosa/agent/CrossCombinator.h
index 679cbc1..9f612a4 100644
--- a/include/rosa/agent/CrossCombinator.h
+++ b/include/rosa/agent/CrossCombinator.h
@@ -1,558 +1,560 @@
//===-- rosa/delux/CrossCombinator.h ----------------------------*- C++ -*-===//
//
// The RoSA Framework
//
// Distributed under the terms and conditions of the Boost Software License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/CrossCombinator.h
///
/// \author Daniel Schnoell
///
/// \date 2019
/// \note based on Maximilian Goetzinger(maxgot @utu.fi) code in
/// CAM_Dirty_include SA-EWS2_Version... inside Agent.cpp
///
/// \brief
///
/// \todo there is 1 exception that needs to be handled correctly.
/// \note the default search function is extremely slow maybe this could be done
/// via template for storage class and the functions/methods to efficiently find
/// the correct LinearFunction
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_CROSSCOMBINATOR_H
#define ROSA_AGENT_CROSSCOMBINATOR_H
#include "rosa/agent/Abstraction.hpp"
#include "rosa/agent/Functionality.h"
-#include "rosa/agent/ReliabilityConfidenceCombinator.h"
+#include "rosa/agent/LikelinessConfidenceCombinator.h"
#include "rosa/core/forward_declarations.h" // needed for id_t
#include "rosa/support/log.h" // needed for error "handling"
// nedded headers
#include <string>
#include <type_traits> //assert
#include <vector>
// for static methods
#include <algorithm>
#include <numeric>
namespace rosa {
namespace agent {
-template <typename id, typename IdentifierType, typename ReliabilityType>
+template <typename id, typename IdentifierType, typename LikelinessType>
std::vector<std::pair<id_t, IdentifierType>> &operator<<(
std::vector<std::pair<id_t, IdentifierType>> &me,
- std::vector<std::tuple<id, IdentifierType, ReliabilityType>> Values) {
+ std::vector<std::tuple<id, IdentifierType, LikelinessType>> Values) {
for (auto tmp : Values) {
std::pair<id, IdentifierType> tmp2;
tmp2.first = std::get<0>(tmp);
tmp2.second = std::get<1>(tmp);
me.push_back(tmp2);
}
return me;
}
/// This is the Combinator class for cross Reliabilities. It has many functions
/// with different purposes
/// \brief It takes the Identifiers and Reliabilities of all given ids and
-/// calculates the Reliability of them together. Also it can creates the
-/// feedback that is needed by the \c ReliabilityAndConfidenceCombinator, which
+/// calculates the Likeliness of them together. Also it can creates the
+/// feedback that is needed by the \c LikelinessAndConfidenceCombinator, which
/// is a kind of confidence.
///
/// \tparam IdentifierType Data type of the Identifier ( Typically double
-/// or float) \tparam ReliabilityType Data type of the Reliability ( Typically
+/// or float) \tparam LikelinessType Data type of the Likeliness ( Typically
/// long or int)
///
/// \note This class is commonly in a master slave relationship as master with
-/// \c ReliabilityAndConfidenceCombinator. The \c operator()() combines the
-/// Reliability of all connected Slaves and uses that as its own Reliability
+/// \c LikelinessAndConfidenceCombinator. The \c operator()() combines the
+/// Likeliness of all connected Slaves and uses that as its own Likeliness
/// also creates the feedback for the Slaves.
///
-/// \note more information about how the Reliability and feedback is
-/// created at \c operator()() , \c getCombinedCrossReliability() , \c
-/// getCombinedInputReliability() , \c getOutputReliability() [ this is the
-/// used Reliability ], \c getCrossConfidence() [ this is the feedback
-/// for all Slaves ]
+/// \note more information about how the Likeliness and feedback is
+/// created at \c operator()() , \c getCombinedCrossLikeliness() , \c
+/// getCombinedInputLikeliness() , \c getOutputLikeliness() [ this is the
+/// used Likeliness ], \c getCrossConfidence() [ this is the feedback
+/// for all Compares ]
///
-/// a bit more special Methods \c CrossConfidence() ,\c CrossReliability()
-template <typename IdentifierType, typename ReliabilityType>
+/// a bit more special Methods \c CrossConfidence() ,\c CrossLikeliness()
+template <typename IdentifierType, typename LikelinessType>
class CrossCombinator {
public:
static_assert(std::is_arithmetic<IdentifierType>::value,
"HighLevel: IdentifierType has to be an arithmetic type\n");
- static_assert(std::is_arithmetic<ReliabilityType>::value,
- "HighLevel: ReliabilityType has to be an arithmetic type\n");
+ static_assert(std::is_arithmetic<LikelinessType>::value,
+ "HighLevel: LikelinessType has to be an arithmetic type\n");
// ---------------------------------------------------------------------------
// useful definitions
// ---------------------------------------------------------------------------
/// typedef To shorten the writing.
- /// \c ConfOrRel
- using ConfOrRel = ConfOrRel<IdentifierType, ReliabilityType>;
+ /// \c Symbol
+ using Symbol = Symbol<IdentifierType, LikelinessType>;
/// To shorten the writing.
using Abstraction =
- typename rosa::agent::Abstraction<IdentifierType, ReliabilityType>;
+ typename rosa::agent::Abstraction<IdentifierType, LikelinessType>;
/// The return type for the \c operator()() Method
struct returnType {
- ReliabilityType CrossReliability;
- std::map<id_t, std::vector<ConfOrRel>> CrossConfidence;
+ LikelinessType CrossLikeliness;
+ std::map<id_t, std::vector<Symbol>> Likeliness;
};
// -------------------------------------------------------------------------
// Relevant Methods
// -------------------------------------------------------------------------
- /// Calculates the Reliability and the CrossConfidences for each id for all
+ /// Calculates the CrossLikeliness and the Likeliness for each id for all
/// of there Identifiers.
///
/// \param Values It gets the Identifiers and Reliabilities of
- /// all connected Slaves inside a vector.
+ /// all connected Compare Agentss inside a vector.
///
/// \return it returns a struct \c returnType containing the \c
- /// getCombinedCrossReliability() and \c getCrossConfidence()
+ /// getCombinedCrossLikeliness() and \c getCrossConfidence()
returnType operator()(
- std::vector<std::tuple<id_t, IdentifierType, ReliabilityType>> Values) {
- return {getOutputReliability(Values), getCrossConfidence(Values)};
+ std::vector<std::tuple<id_t, IdentifierType, LikelinessType>> Values) {
+ return {getOutputLikeliness(Values), getCrossConfidence(Values)};
}
- /// returns the combined Cross Reliability via \c
+ /// returns the combined Cross Likeliness via \c
/// CombinedCrossRelCombinationMethod \c
/// setCombinedCrossRelCombinationMethod() for all ids \c
- /// CrossReliability() \param Values the used Values
- ReliabilityType getCombinedCrossReliability(
- const std::vector<std::tuple<id_t, IdentifierType, ReliabilityType>>
+ /// CrossLikeliness() \param Values the used Values
+ LikelinessType getCombinedCrossLikeliness(
+ const std::vector<std::tuple<id_t, IdentifierType, LikelinessType>>
&Values) noexcept {
- ReliabilityType combinedCrossRel = -1;
+ LikelinessType combinedCrossRel = -1;
std::vector<std::pair<id_t, IdentifierType>> Agents;
Agents << Values;
for (auto Value : Values) {
id_t id = std::get<0>(Value);
IdentifierType sc = std::get<1>(Value);
- // calculate the cross reliability for this slave agent
- ReliabilityType realCrossReliabilityOfSlaveAgent =
- CrossReliability({id, sc}, Agents);
+ // calculate the cross Likeliness for this Compare agent
+ LikelinessType realCrossLikelinessOfCompareInput =
+ CrossLikeliness({id, sc}, Agents);
if (combinedCrossRel != -1)
combinedCrossRel = CombinedCrossRelCombinationMethod(
- combinedCrossRel, realCrossReliabilityOfSlaveAgent);
+ combinedCrossRel, realCrossLikelinessOfCompareInput);
else
- combinedCrossRel = realCrossReliabilityOfSlaveAgent;
+ combinedCrossRel = realCrossLikelinessOfCompareInput;
}
return combinedCrossRel;
}
/// returns the combined via \c CombinedInputRelCombinationMethod \c
- /// setCombinedInputRelCombinationMethod() input reliability \param Values
+ /// setCombinedInputRelCombinationMethod() input Likeliness \param Values
/// the used Values
- ReliabilityType getCombinedInputReliability(
- const std::vector<std::tuple<id_t, IdentifierType, ReliabilityType>>
+ LikelinessType getCombinedInputLikeliness(
+ const std::vector<std::tuple<id_t, IdentifierType, LikelinessType>>
&Values) noexcept {
- ReliabilityType combinedInputRel = -1;
+ LikelinessType combinedInputRel = -1;
std::vector<std::pair<id_t, IdentifierType>> Agents;
Agents << Values;
for (auto Value : Values) {
- ReliabilityType rel = std::get<2>(Value);
+ LikelinessType rel = std::get<2>(Value);
if (combinedInputRel != -1)
combinedInputRel =
CombinedInputRelCombinationMethod(combinedInputRel, rel);
else
combinedInputRel = rel;
}
return combinedInputRel;
}
- /// returns the combination via \c OutputReliabilityCombinationMethod \c
- /// setOutputReliabilityCombinationMethod() of the Cross reliability and
- /// input reliability \param Values the used Values
- ReliabilityType getOutputReliability(
- const std::vector<std::tuple<id_t, IdentifierType, ReliabilityType>>
+ /// returns the combination via \c OutputLikelinessCombinationMethod \c
+ /// setOutputLikelinessCombinationMethod() of the Cross Likeliness and
+ /// input Likeliness \param Values the used Values
+ LikelinessType getOutputLikeliness(
+ const std::vector<std::tuple<id_t, IdentifierType, LikelinessType>>
&Values) noexcept {
- return OutputReliabilityCombinationMethod(
- getCombinedInputReliability(Values),
- getCombinedCrossReliability(Values));
+ return OutputLikelinessCombinationMethod(
+ getCombinedInputLikeliness(Values),
+ getCombinedCrossLikeliness(Values));
}
/// returns the crossConfidence for all ids \c CrossConfidence()
/// \param Values the used Values
- std::map<id_t, std::vector<ConfOrRel>> getCrossConfidence(
- const std::vector<std::tuple<id_t, IdentifierType, ReliabilityType>>
+ std::map<id_t, std::vector<Symbol>> getCrossConfidence(
+ const std::vector<std::tuple<id_t, IdentifierType, LikelinessType>>
&Values) noexcept {
std::vector<std::pair<id_t, IdentifierType>> Agents;
- std::map<id_t, std::vector<ConfOrRel>> output;
- std::vector<ConfOrRel> output_temporary;
+ std::map<id_t, std::vector<Symbol>> output;
+ std::vector<Symbol> output_temporary;
Agents << Values;
for (auto Value : Values) {
id_t id = std::get<0>(Value);
output_temporary.clear();
for (IdentifierType thoIdentifier : Identifiers[id]) {
- ConfOrRel data;
+ Symbol data;
data.Identifier = thoIdentifier;
- data.Reliability = CrossConfidence(id, thoIdentifier, Agents);
+ data.Likeliness = CrossConfidence(id, thoIdentifier, Agents);
output_temporary.push_back(data);
}
output.insert({id, output_temporary});
}
return output;
}
/// Calculates the Cross Confidence
/// \brief it uses the Identifier value and calculates
/// the Confidence of a given agent( represented by their id ) for a given
/// Identifiers in connection to all other given agents
///
- /// \note all combination of agents and there corresponding Cross Reliability
+ /// \note all combination of agents and there corresponding Cross Likeliness
/// function have to be specified
- ReliabilityType
+ LikelinessType
CrossConfidence(const id_t &MainAgent, const IdentifierType &TheoreticalValue,
const std::vector<std::pair<id_t, IdentifierType>>
- &SlaveAgents) noexcept {
+ &CompareInputs) noexcept {
- ReliabilityType crossReliabiability;
+ LikelinessType crossReliabiability;
- std::vector<ReliabilityType> values;
+ std::vector<LikelinessType> values;
- for (std::pair<id_t, IdentifierType> SlaveAgent : SlaveAgents) {
+ for (std::pair<id_t, IdentifierType> CompareInput : CompareInputs) {
- if (SlaveAgent.first == MainAgent)
+ if (CompareInput.first == MainAgent)
continue;
- if (TheoreticalValue == SlaveAgent.second)
+ if (TheoreticalValue == CompareInput.second)
crossReliabiability = 1;
else
crossReliabiability =
- 1 / (crossReliabilityParameter *
- std::abs(TheoreticalValue - SlaveAgent.second));
-
- // profile reliability
- ReliabilityType crossReliabilityFromProfile =
- getCrossReliabilityFromProfile(
- MainAgent, SlaveAgent.first,
- std::abs(TheoreticalValue - SlaveAgent.second));
+ 1 / (crossLikelinessParameter *
+ std::abs(TheoreticalValue - CompareInput.second));
+
+ // profile Likeliness
+ LikelinessType crossLikelinessFromProfile =
+ getCrossLikelinessFromProfile(
+ MainAgent, CompareInput.first,
+ std::abs(TheoreticalValue - CompareInput.second));
values.push_back(
- std::max(crossReliabiability, crossReliabilityFromProfile));
+ std::max(crossReliabiability, crossLikelinessFromProfile));
}
return Method(values);
}
- /// Calculates the Cross Reliability
+ /// Calculates the Cross Likeliness
/// \brief it uses the Identifier value and calculates
- /// the Reliability of a given agent( represented by their id ) in connection
+ /// the Likeliness of a given agent( represented by their id ) in connection
/// to all other given agents
///
- /// \note all combination of agents and there corresponding Cross Reliability
+ /// \note all combination of agents and there corresponding Cross Likeliness
/// function have to be specified
- ReliabilityType
- CrossReliability(const std::pair<id_t, IdentifierType> &MainAgent,
+ LikelinessType
+ CrossLikeliness(const std::pair<id_t, IdentifierType> &MainAgent,
const std::vector<std::pair<id_t, IdentifierType>>
- &SlaveAgents) noexcept {
+ &CompareInputs) noexcept {
- ReliabilityType crossReliabiability;
- std::vector<ReliabilityType> values;
+ LikelinessType crossReliabiability;
+ std::vector<LikelinessType> values;
- for (std::pair<id_t, IdentifierType> SlaveAgent : SlaveAgents) {
+ for (std::pair<id_t, IdentifierType> CompareInput : CompareInputs) {
- if (SlaveAgent.first == MainAgent.first)
+ if (CompareInput.first == MainAgent.first)
continue;
- if (MainAgent.second == SlaveAgent.second)
+ if (MainAgent.second == CompareInput.second)
crossReliabiability = 1;
else
crossReliabiability =
- 1 / (crossReliabilityParameter *
- std::abs(MainAgent.second - SlaveAgent.second));
-
- // profile reliability
- ReliabilityType crossReliabilityFromProfile =
- getCrossReliabilityFromProfile(
- MainAgent.first, SlaveAgent.first,
- std::abs(MainAgent.second - SlaveAgent.second));
+ 1 / (crossLikelinessParameter *
+ std::abs(MainAgent.second - CompareInput.second));
+
+ // profile Likeliness
+ LikelinessType crossLikelinessFromProfile =
+ getCrossLikelinessFromProfile(
+ MainAgent.first, CompareInput.first,
+ std::abs(MainAgent.second - CompareInput.second));
values.push_back(
- std::max(crossReliabiability, crossReliabilityFromProfile));
+ std::max(crossReliabiability, crossLikelinessFromProfile));
}
return Method(values);
}
// --------------------------------------------------------------------------
// Defining the class
// --------------------------------------------------------------------------
- /// adds a Cross Reliability Profile used to get the Reliability of the
+ /// adds a Cross Likeliness Profile used to get the Likeliness of the
/// Identifier difference
///
/// \param idA The id of the one \c Agent ( ideally the id of \c Unit to make
/// it absolutely unique )
///
/// \param idB The id of the other \c Agent
///
/// \param Function A shared pointer to an \c Abstraction it would use the
/// difference in Identifier for its input
- void addCrossReliabilityProfile(
+ void addCrossLikelinessProfile( //conf
const id_t &idA, const id_t &idB,
const std::shared_ptr<Abstraction> &Function) noexcept {
- Functions.push_back({true, idA, idB, Function});
+ Functions.push_back({true, idA, idB, Function}); //confidence Profiles
}
- /// sets the cross reliability parameter
- void setCrossReliabilityParameter(const ReliabilityType &val) noexcept {
- crossReliabilityParameter = val;
+ /// sets the cross Likeliness parameter
+ void setCrossLikelinessParameter(const LikelinessType &val) noexcept {
+ crossLikelinessParameter = val;
}
/// This is the adder for the Identifiers
/// \param id The id of the Agent of the Identifiers
/// \param _Identifiers id specific Identifiers. This will be copied So that if
- /// Slaves have different Identifiers they can be used correctly. \brief The
- /// Identifiers of all connected slave Agents has to be known to be able to
+ /// Compares have different Identifiers they can be used correctly. \brief The
+ /// Identifiers of all connected Compare Agents has to be known to be able to
/// iterate over them
void
- addIdentifiers(const id_t &id,
+ addIdentifiers(const id_t &id, //add IdentifierIdentifiers
const std::vector<IdentifierType> &_Identifiers) noexcept {
Identifiers.insert({id, _Identifiers});
}
// -------------------------------------------------------------------------
// Combinator Settings
// -------------------------------------------------------------------------
+ // remove Method
+
/// sets the used method to combine the values
/// \param Meth the method which should be used. predefined functions in the
/// struct \c predefinedMethods \c
/// CONJUNCTION() \c AVERAGE() \c DISJUNCTION()
- void setCrossReliabilityCombinatorMethod(
- const std::function<ReliabilityType(std::vector<ReliabilityType> values)>
+ void setCrossLikelinessCombinatorMethod(
+ const std::function<LikelinessType(std::vector<LikelinessType> values)>
&Meth) noexcept {
Method = Meth;
}
- /// sets the combination method for the combined cross reliability
+ /// sets the combination method for the combined cross Likeliness
/// \param Meth the method which should be used. predefined functions in the
/// struct \c predefinedMethods CombinedCrossRelCombinationMethod<method>()
void setCombinedCrossRelCombinationMethod(
- const std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
+ const std::function<LikelinessType(LikelinessType, LikelinessType)>
&Meth) noexcept {
CombinedCrossRelCombinationMethod = Meth;
}
/// sets the combined input rel method
/// \param Meth the method which should be used. predefined functions in the
/// struct \c predefinedMethods CombinedInputRelCombinationMethod<method>()
void setCombinedInputRelCombinationMethod(
- const std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
+ const std::function<LikelinessType(LikelinessType, LikelinessType)>
&Meth) noexcept {
CombinedInputRelCombinationMethod = Meth;
}
- /// sets the used OutputReliabilityCombinationMethod
+ /// sets the used OutputLikelinessCombinationMethod
/// \param Meth the method which should be used. predefined functions in the
- /// struct \c predefinedMethods OutputReliabilityCombinationMethod<method>()
- void setOutputReliabilityCombinationMethod(
- const std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
+ /// struct \c predefinedMethods OutputLikelinessCombinationMethod<method>()
+ void setOutputLikelinessCombinationMethod(
+ const std::function<LikelinessType(LikelinessType, LikelinessType)>
&Meth) noexcept {
- OutputReliabilityCombinationMethod = Meth;
+ OutputLikelinessCombinationMethod = Meth;
}
// -------------------------------------------------------------------------
// Predefined Functions
// -------------------------------------------------------------------------
/// This struct is a pseudo name space to have easier access to all predefined
/// methods while still not overcrowding the class it self
struct predefinedMethods {
/// predefined combination method
- static ReliabilityType CONJUNCTION(std::vector<ReliabilityType> values) {
+ static LikelinessType CONJUNCTION(std::vector<LikelinessType> values) {
return *std::min_element(values.begin(), values.end());
}
/// predefined combination method
- static ReliabilityType AVERAGE(std::vector<ReliabilityType> values) {
+ static LikelinessType AVERAGE(std::vector<LikelinessType> values) {
return std::accumulate(values.begin(), values.end(), 0.0) / values.size();
}
/// predefined combination method
- static ReliabilityType DISJUNCTION(std::vector<ReliabilityType> values) {
+ static LikelinessType DISJUNCTION(std::vector<LikelinessType> values) {
return *std::max_element(values.begin(), values.end());
}
/// predefined combination Method
- static ReliabilityType
- CombinedCrossRelCombinationMethodMin(ReliabilityType A, ReliabilityType B) {
+ static LikelinessType
+ CombinedCrossRelCombinationMethodMin(LikelinessType A, LikelinessType B) {
return std::min(A, B);
}
/// predefined combination Method
- static ReliabilityType
- CombinedCrossRelCombinationMethodMax(ReliabilityType A, ReliabilityType B) {
+ static LikelinessType
+ CombinedCrossRelCombinationMethodMax(LikelinessType A, LikelinessType B) {
return std::max(A, B);
}
/// predefined combination Method
- static ReliabilityType
- CombinedCrossRelCombinationMethodMult(ReliabilityType A,
- ReliabilityType B) {
+ static LikelinessType
+ CombinedCrossRelCombinationMethodMult(LikelinessType A,
+ LikelinessType B) {
return A * B;
}
/// predefined combination Method
- static ReliabilityType
- CombinedCrossRelCombinationMethodAverage(ReliabilityType A,
- ReliabilityType B) {
+ static LikelinessType
+ CombinedCrossRelCombinationMethodAverage(LikelinessType A,
+ LikelinessType B) {
return (A + B) / 2;
}
/// predefined combination Method
- static ReliabilityType
- CombinedInputRelCombinationMethodMin(ReliabilityType A, ReliabilityType B) {
+ static LikelinessType
+ CombinedInputRelCombinationMethodMin(LikelinessType A, LikelinessType B) {
return std::min(A, B);
}
/// predefined combination Method
- static ReliabilityType
- CombinedInputRelCombinationMethodMax(ReliabilityType A, ReliabilityType B) {
+ static LikelinessType
+ CombinedInputRelCombinationMethodMax(LikelinessType A, LikelinessType B) {
return std::max(A, B);
}
/// predefined combination Method
- static ReliabilityType
- CombinedInputRelCombinationMethodMult(ReliabilityType A,
- ReliabilityType B) {
+ static LikelinessType
+ CombinedInputRelCombinationMethodMult(LikelinessType A,
+ LikelinessType B) {
return A * B;
}
/// predefined combination Method
- static ReliabilityType
- CombinedInputRelCombinationMethodAverage(ReliabilityType A,
- ReliabilityType B) {
+ static LikelinessType
+ CombinedInputRelCombinationMethodAverage(LikelinessType A,
+ LikelinessType B) {
return (A + B) / 2;
}
/// predefined combination method
- static ReliabilityType
- OutputReliabilityCombinationMethodMin(ReliabilityType A,
- ReliabilityType B) {
+ static LikelinessType
+ OutputLikelinessCombinationMethodMin(LikelinessType A,
+ LikelinessType B) {
return std::min(A, B);
}
/// predefined combination method
- static ReliabilityType
- OutputReliabilityCombinationMethodMax(ReliabilityType A,
- ReliabilityType B) {
+ static LikelinessType
+ OutputLikelinessCombinationMethodMax(LikelinessType A,
+ LikelinessType B) {
return std::max(A, B);
}
/// predefined combination method
- static ReliabilityType
- OutputReliabilityCombinationMethodMult(ReliabilityType A,
- ReliabilityType B) {
+ static LikelinessType
+ OutputLikelinessCombinationMethodMult(LikelinessType A,
+ LikelinessType B) {
return A * B;
}
/// predefined combination method
- static ReliabilityType
- OutputReliabilityCombinationMethodAverage(ReliabilityType A,
- ReliabilityType B) {
+ static LikelinessType
+ OutputLikelinessCombinationMethodAverage(LikelinessType A,
+ LikelinessType B) {
return (A + B) / 2;
}
};
// -------------------------------------------------------------------------
// Cleanup
// -------------------------------------------------------------------------
~CrossCombinator() { Functions.clear(); }
// --------------------------------------------------------------------------
// Parameters
// --------------------------------------------------------------------------
private:
struct Functionblock {
bool exists = false;
id_t A;
id_t B;
std::shared_ptr<Abstraction> Funct;
};
std::map<id_t, std::vector<IdentifierType>> Identifiers;
/// From Maxi in his code defined as 1 can be changed by set
- ReliabilityType crossReliabilityParameter = 1;
+ LikelinessType crossLikelinessParameter = 1;
- /// Stored Cross Reliability Functions
+ /// Stored Cross Likeliness Functions
std::vector<Functionblock> Functions;
/// Method which is used to combine the generated values
- std::function<ReliabilityType(std::vector<ReliabilityType>)> Method =
+ std::function<LikelinessType(std::vector<LikelinessType>)> Method =
predefinedMethods::AVERAGE;
- std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
+ std::function<LikelinessType(LikelinessType, LikelinessType)>
CombinedCrossRelCombinationMethod =
predefinedMethods::CombinedCrossRelCombinationMethodMin;
- std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
+ std::function<LikelinessType(LikelinessType, LikelinessType)>
CombinedInputRelCombinationMethod =
predefinedMethods::CombinedInputRelCombinationMethodMin;
- std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
- OutputReliabilityCombinationMethod =
- predefinedMethods::OutputReliabilityCombinationMethodMin;
+ std::function<LikelinessType(LikelinessType, LikelinessType)>
+ OutputLikelinessCombinationMethod =
+ predefinedMethods::OutputLikelinessCombinationMethodMin;
//--------------------------------------------------------------------------------
// helper function
/// very inefficient searchFunction
Functionblock (*searchFunction)(std::vector<Functionblock> vect,
const id_t nameA, const id_t nameB) =
[](std::vector<Functionblock> vect, const id_t nameA,
const id_t nameB) -> Functionblock {
for (Functionblock tmp : vect) {
if (tmp.A == nameA && tmp.B == nameB)
return tmp;
if (tmp.A == nameB && tmp.B == nameA)
return tmp;
}
return Functionblock();
};
/// evaluates the corresponding LinearFunction with the Identifier difference
- /// \param nameA these two parameters are the unique identifiers
- /// \param nameB these two parameters are the unique identifiers
+ /// \param nameA these two parameters are the unique Identifiers
+ /// \param nameB these two parameters are the unique Identifiers
/// for the LinerFunction
///
/// \note it doesn't matter if they are swapped
- ReliabilityType getCrossReliabilityFromProfile(
+ LikelinessType getCrossLikelinessFromProfile(
const id_t &nameA, const id_t &nameB,
const IdentifierType &IdentifierDifference) noexcept {
Functionblock block = searchFunction(Functions, nameA, nameB);
if (!block.exists) {
- LOG_ERROR(("CrossReliability: Block:" + std::to_string(nameA) + "," +
+ LOG_ERROR(("CrossLikeliness: Block:" + std::to_string(nameA) + "," +
std::to_string(nameB) + "doesn't exist returning 0"));
return 0;
}
return block.Funct->operator()(IdentifierDifference);
}
};
} // End namespace agent
} // End namespace rosa
#endif // ROSA_AGENT_CROSSCOMBINATOR_H
\ No newline at end of file
diff --git a/include/rosa/agent/ReliabilityConfidenceCombinator.h b/include/rosa/agent/ReliabilityConfidenceCombinator.h
index f8a2074..d9b8a61 100644
--- a/include/rosa/agent/ReliabilityConfidenceCombinator.h
+++ b/include/rosa/agent/ReliabilityConfidenceCombinator.h
@@ -1,761 +1,761 @@
//===-- rosa/agent/ReliabilityConfidenceCombinator.h ------------*- C++ -*-===//
//
// The RoSA Framework
//
// Distributed under the terms and conditions of the Boost Software License 1.0.
// See accompanying file LICENSE.
//
// If you did not receive a copy of the license file, see
// http://www.boost.org/LICENSE_1_0.txt.
//
//===----------------------------------------------------------------------===//
///
/// \file rosa/agent/ReliabilityConfidenceCombinator.h
///
/// \author Daniel Schnoell (daniel.schnoell@tuwien.ac.at)
///
/// \date 2019
///
/// \brief Definition of *ReliabilityConfidenceCombinator* *functionality*.
///
/// \note based on Maximilian Goetzinger (maxgot@utu.fi) code in
/// CAM_Dirty_include SA-EWS2_Version... inside Agent.cpp
///
/// \note By defining and setting Reliability_trace_level it is possible to
/// change the level to which it should be traced. \note All classes throw
/// runtime errors if not all things are set
///
/// \note should the Reliability be capped?
///
///
//===----------------------------------------------------------------------===//
#ifndef ROSA_AGENT_ReliabilityConfidenceCombinator_H
#define ROSA_AGENT_ReliabilityConfidenceCombinator_H
#include "rosa/core/forward_declarations.h" // needed for id_t
#include "rosa/support/log.h"
#include "rosa/agent/FunctionAbstractions.hpp"
#include "rosa/agent/Functionality.h"
#include "rosa/agent/RangeConfidence.hpp"
#include <algorithm>
#include <functional>
#include <type_traits>
#include <vector>
/// 0 everything
/// 1 vectors
/// 2 outputs
#define trace_everything 0
#define trace_vectors 1
#define trace_outputs 2
#ifndef Reliability_trace_level
#define Reliability_trace_level 0
#endif
#define trace_end "\n\n\n"
namespace rosa {
namespace agent {
/// This is a struct with a few methods that make Likeliness Combinator
/// more readable \tparam IdentifierType The Data-type of the Identifiers \tparam
/// LikelinessType The Data-type of the Likeliness
/// \note this should/will be changed into a std::pair because it isn't needed
/// anymore
template <typename IdentifierType, typename LikelinessType> struct Symbol {
/// making both Template Arguments readable to make a few things easier
using _IdentifierType = IdentifierType;
/// making both Template Arguments readable to make a few things easier
using _LikelinessType = LikelinessType;
/// The actual place where the data is stored
IdentifierType Identifier;
/// The actual place where the data is stored
LikelinessType Likeliness;
Symbol(IdentifierType _Identifier, LikelinessType _Likeliness)
: Identifier(_Identifier), Likeliness(_Likeliness){};
Symbol(){};
/// Pushes the Data in a Human readable form
/// \param out The stream where it is written to
/// \param c The struct itself
friend std::ostream &operator<<(std::ostream &out, const Symbol &c) {
out << "Identifier: " << c.Identifier << "\t Likeliness: " << c.Likeliness
<< " ";
return out;
}
/// needed or it throws an clang diagnosic error
using map =
std::map<IdentifierType, LikelinessType>; // needed or it throws an
// clang diagnosic error
/// Filles the vector with the data inside the map
/// \param me The vector to be filled
/// \param data The data wich is to be pushed into the vector
friend std::vector<Symbol> &operator<<(std::vector<Symbol> &me,
map &&data) {
for (auto tmp : data) {
me.push_back(Symbol(tmp.first, tmp.second));
#if Reliability_trace_level <= trace_everything
LOG_TRACE_STREAM << "\n" << Symbol(tmp.first, tmp.second) << trace_end;
#endif
}
return me;
}
/// This is to push the data inside a vector in a human readable way into the
/// ostream \param out The ostream \param c The vector which is read
friend std::ostream &operator<<(std::ostream &out,
const std::vector<Symbol> &c) {
std::size_t index = 0;
for (Symbol data : c) {
out << index << " : " << data << "\n";
index++;
}
return out;
}
};
/// This is the combinator for Reliability and confidences it takes the
/// Value, its "History" and feedback from \c
/// CrossCombinator to calculate different Reliabilities.
/// \tparam ValueType Data-type of the Value ( Typically
/// double or float) \tparam IdentifierType Data-type of the Identifier ( Typically
/// long or int)
/// \tparam ReliabilityType Data-type of the Reliability (
/// Typically double or float)
///
/// \note more information about how it calculates
/// the Reliabilities it should be considered feedback is a sort of Confidence
/// \verbatim
///----------------------------------------------------------------------------------
///
///
/// ->AbsoluteReliabilityFunction---> getInputReliability()
/// | |
/// | V
-/// Sensor Value ---| PossibleIdentifierCombinationMethod -> next line
+/// Sensor Value ---| ReliabilityAndConfidenceCombinator -> next line
/// | A |
/// | | V
-/// ->ConfidenceFunction--- getPossibleIdentifiers()
+/// ->ConfidenceFunction getPossibleIdentifiers()
///
///-----------------------------------------------------------------------------------
///
/// feedback
/// |
/// V
/// FeedbackSymbols
-/// | -> History ---|
-/// V | V
-/// here -> LikelinessFeedbackCombinator -------->LikelinessHistoryCombinator->next line
+/// | -> History -------|
+/// V | V
+/// here -> LikelinessFeedbackCombinator ------>LikelinessHistoryCombinator->next line
/// | |
/// V V
-/// getpossibleIdentifiersWithMasterFeedback()SymbolsWithHistory()
+/// getpossibleIdentifiersWithMasterFeedback() SymbolsWithHistory()
///
///----------------------------------------------------------------------------------
///
/// here -> sort -> most likely -> bestSymbol()
///
///---------------------------------------------------------------------------------
/// \endverbatim
/// the mentioned methods are early outs so if two ore more of them are run in
/// the same step they will be interpreted as different time steps
/// <pre>
/// Default values for Combinators:
-/// InputReliabilityCombinator = combinationMin;
-/// PossibleIdentifierCombinationMethod=PossibleIdentifierCombinationMethodMin;
+/// AbsoluteAndSlopeReliabilityCombinationMethod = combinationMin;
+/// ReliabilityAndConfidenceCombinator=ReliabilityAndConfidenceCombinatorMin;
/// LikelinessFeedbackCombinator = LikelinessFeedbackCombinatorAverage;
/// LikelinessHistoryCombinator = LikelinessHistoryCombinatorMax;
/// </pre>
/// To understand the place where the combinator methods come into play a list
/// for each early exit and which Methods are used.
///
/// <pre>
/// \c getInputReliability():
-/// -InputReliabilityCombinator
+/// -AbsoluteAndSlopeReliabilityCombinationMethod
/// \c getPossibleIdentifiers():
-/// -InputReliabilityCombinator
-/// -PossibleIdentifierCombinationMethod
+/// -AbsoluteAndSlopeReliabilityCombinationMethod
+/// -ReliabilityAndConfidenceCombinator
/// \c getpossibleIdentifiersWithMasterFeedback():
-/// -InputReliabilityCombinator
-/// -PossibleIdentifierCombinationMethod
+/// -AbsoluteAndSlopeReliabilityCombinationMethod
+/// -ReliabilityAndConfidenceCombinator
/// -LikelinessFeedbackCombinator
/// \c SymbolsWithHistory():
-/// -InputReliabilityCombinator
-/// -PossibleIdentifierCombinationMethod
+/// -AbsoluteAndSlopeReliabilityCombinationMethod
+/// -ReliabilityAndConfidenceCombinator
/// -LikelinessFeedbackCombinator
/// -LikelinessHistoryCombinator
/// \c bestSymbol():
-/// -InputReliabilityCombinator
-/// -PossibleIdentifierCombinationMethod
+/// -AbsoluteAndSlopeReliabilityCombinationMethod
+/// -ReliabilityAndConfidenceCombinator
/// -LikelinessFeedbackCombinator
/// -LikelinessHistoryCombinator
/// </pre>
template <typename ValueType, typename IdentifierType,
typename ReliabilityType>
class ReliabilityAndConfidenceCombinator {
public:
static_assert(std::is_arithmetic<ValueType>::value,
"LowLevel: ValueType has to an arithmetic type\n");
static_assert(std::is_arithmetic<IdentifierType>::value,
"LowLevel: IdentifierType has to an arithmetic type\n");
static_assert(std::is_arithmetic<ReliabilityType>::value,
"LowLevel: ReliabilityType has to an arithmetic type\n");
/// Typedef to shorten the writing.
/// \c Symbol
using Symbol = Symbol<IdentifierType, ReliabilityType>;
/// Calculates the input Reliability by combining Reliability of the Sensor
/// and the Slope Reliability \param SensorValue The sensor Value \note to set
- /// the combination method \c setInputReliabilityCombinator()
+ /// the combination method \c setAbsoluteAndSlopeReliabilityCombinationMethod()
ReliabilityType
getInputReliability(const ValueType &SensorValue) noexcept {
ReliabilityType inputReliability =
getReliability(SensorValue, previousSensorValue, timeStep);
previousSensorValue = SensorValue;
PreviousSensorValueExists = true;
return inputReliability;
}
/// Calculates the possible Identifiers
/// \param SensorValue the Sensor Value
/// \brief it combines the input reliability and the confidence of the Sensor.
/// The use combination method can be set using \c
- /// setPossibleIdentifierCombinationMethod()
+ /// setReliabilityAndConfidenceCombinator()
std::vector<Symbol>
getPossibleIdentifiers(const ValueType &SensorValue) noexcept {
std::vector<Symbol> possibleIdentifiers;
ReliabilityType inputReliability = getInputReliability(SensorValue);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
#endif
possibleIdentifiers << ConfidenceFunction->operator()(SensorValue);
- possibleIdentifiers = PossibleIdentifierCombinationMethod(
+ possibleIdentifiers = ReliabilityAndConfidenceCombinator(
possibleIdentifiers, inputReliability);
return possibleIdentifiers;
}
/// return the Possible Values with the feedback in mind
/// \param SensorValue The sensor Value
/// \brief it combines the input reliability and the confidence of the Sensor.
/// The combines them with LikelinessFeedbackCombinator and returns the result.
std::vector<Symbol> getpossibleIdentifiersWithMasterFeedback(
const ValueType &SensorValue) noexcept {
std::vector<Symbol> possibleIdentifiers;
ReliabilityType inputReliability = getInputReliability(SensorValue);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
#endif
possibleIdentifiers << ConfidenceFunction->operator()(SensorValue);
- possibleIdentifiers = PossibleIdentifierCombinationMethod(
+ possibleIdentifiers = ReliabilityAndConfidenceCombinator(
possibleIdentifiers, inputReliability);
possibleIdentifiers =
LikelinessFeedbackCombinator(possibleIdentifiers, FeedbackSymbols);
return possibleIdentifiers;
}
/// returns all possible Identifiers and Reliabilities with the History in
/// mind \param SensorValue the Sensor value how this is done is described at
/// the class.
std::vector<Symbol> SymbolsWithHistory(
const ValueType &SensorValue) noexcept {
std::vector<Symbol> ActuallPossibleIdentifiers;
std::vector<Symbol> possibleIdentifiers;
ReliabilityType inputReliability = getInputReliability(SensorValue);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
#endif
possibleIdentifiers << ConfidenceFunction->operator()(SensorValue);
- possibleIdentifiers = PossibleIdentifierCombinationMethod(
+ possibleIdentifiers = ReliabilityAndConfidenceCombinator(
possibleIdentifiers, inputReliability);
possibleIdentifiers =
LikelinessFeedbackCombinator(possibleIdentifiers, FeedbackSymbols);
saveInHistory(possibleIdentifiers);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n"
<< possibleIdentifiers << trace_end;
LOG_TRACE_STREAM << "\npossibleIdentifiers:\n"
<< possibleIdentifiers << trace_end;
#endif
possibleIdentifiers.clear();
return SymbolsFromHistory();
}
/// Calculates the Reliability
/// \param SensorValue The current Values of the Sensor
///
/// \return Reliability and Identifier of the current SensorValue
///
Symbol bestSymbol(
const ValueType &SensorValue) noexcept {
#if Reliability_trace_level <= trace_outputs
LOG_TRACE_STREAM << "\nTrace level is set to: " << Reliability_trace_level
<< "\n"
<< "Will trace: "
<< ((Reliability_trace_level == trace_outputs)
? "outputs"
: (Reliability_trace_level == trace_vectors)
? "vectors"
: (Reliability_trace_level ==
trace_everything)
? "everything"
: "undefined")
<< trace_end;
#endif
std::vector<Symbol> ActuallPossibleIdentifiers;
std::vector<Symbol> possibleIdentifiers;
ReliabilityType inputReliability = getInputReliability(SensorValue);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\ninput Rel: " << inputReliability << trace_end;
#endif
possibleIdentifiers << ConfidenceFunction->operator()(SensorValue);
- possibleIdentifiers = PossibleIdentifierCombinationMethod(
+ possibleIdentifiers = ReliabilityAndConfidenceCombinator(
possibleIdentifiers, inputReliability);
possibleIdentifiers =
LikelinessFeedbackCombinator(possibleIdentifiers, FeedbackSymbols);
saveInHistory(possibleIdentifiers);
#if Reliability_trace_level <= trace_vectors
LOG_TRACE_STREAM << "\nActuallPossibleIdentifiers:\n"
<< possibleIdentifiers << trace_end;
LOG_TRACE_STREAM << "\npossibleIdentifiers:\n"
<< possibleIdentifiers << trace_end;
#endif
possibleIdentifiers.clear();
possibleIdentifiers = SymbolsFromHistory();
std::sort(possibleIdentifiers.begin(), possibleIdentifiers.end(),
[](Symbol A, Symbol B) -> bool {
return A.Likeliness > B.Likeliness;
});
#if Reliability_trace_level <= trace_outputs
LOG_TRACE_STREAM << "\noutput lowlevel: " << possibleIdentifiers.at(0)
<< trace_end;
#endif
return possibleIdentifiers.at(0);
}
/// feedback for this functionality most commonly it comes from a Master Agent
/// \param _FeedbackSymbols The Identifiers + Reliability for the feedback
/// \brief This input kind of resembles a confidence but not
/// directly it more or less says: compared to the other Identifiers inside
/// the System these are the Identifiers with the Reliability that you have.
void feedback(
const std::vector<Symbol>
&_FeedbackSymbols) noexcept // it is being copied internally anyway
{
FeedbackSymbols = _FeedbackSymbols;
}
//
// ----------------------Reliability and Confidence Function setters----------
//
/// This is the setter for Confidence Function
/// \param _Confidence A pointer to the Functional for the \c Confidence of the
/// Sensor value
void setConfidenceFunction(
std::shared_ptr<RangeConfidence<ReliabilityType, IdentifierType,
ValueType>> &_ConfidenceFunction) noexcept {
ConfidenceFunction = _ConfidenceFunction;
}
/// This is the setter for AbsoluteReliabilityFunction
/// \param _AbsoluteReliabilityFunction A pointer to the Functional for the AbsoluteReliabilityFunction
/// \brief The AbsoluteReliabilityFunction takes the current Sensor value and return the
/// AbsoluteReliabilityFunction of the value.
void setAbsoluteReliabilityFunction(
std::shared_ptr<Abstraction<ValueType, ReliabilityType>>
&_AbsoluteReliabilityFunction) noexcept {
AbsoluteReliabilityFunction = _AbsoluteReliabilityFunction;
}
/// This is the setter for ReliabilitySlopeFunction Function
/// \param _ReliabilitySlopeFunction A pointer to the Functional for the
/// ReliabilitySlopeFunction
/// \brief The ReliabilitySlopeFunction takes the difference of the current Sensor
/// Value to the last one and tells you how likely the change is.
void setReliabilitySlopeFunction(
std::shared_ptr<Abstraction<ValueType, ReliabilityType>>
&_ReliabilitySlopeFunction) noexcept {
ReliabilitySlopeFunction = _ReliabilitySlopeFunction;
}
/// This is the setter for TimeFunctionForLikeliness Function
/// \param _TimeFunctionForLikeliness A pointer to the Functional for the TimeFunctionForLikeliness
/// \brief The time function takes the position in the History with greater
/// equals older and return a Reliability of how "relevant" it is.
void setTimeFunctionForLikelinessFunction(
std::shared_ptr<Abstraction<std::size_t, ReliabilityType>>
&_TimeFunctionForLikeliness) noexcept {
TimeFunctionForLikeliness = _TimeFunctionForLikeliness;
}
/// This is the setter for all possible Identifiers
/// \param Identifiers A vector containing all Identifiers
/// \brief This exists even though \c Identifier Type is an arithmetic Type because
/// the Identifiers do not need to be "next" to each other ( ex. Identifiers={ 1 7 24 })
void setIdentifiers(const std::vector<IdentifierType> &Identifiers) noexcept {
this->Identifiers = Identifiers;
}
/// This sets the Maximum length of the History
/// \param length The length
void setHistoryLength(const std::size_t &length) noexcept {
this->HistoryMaxSize = length;
}
/// This sets the Value set Counter
/// \param timeStep the new Value
/// \note This might actually be only an artifact. It is only used to get the
/// reliability from the \c ReliabilitySlopeFunction [ ReliabilitySlopeFunction->operator()(
/// (lastValue - actualValue) / (ValueType)timeStep) ]
void settimeStep(const unsigned int &timeStep) noexcept {
this->timeStep = timeStep;
}
//
// ----------------combinator setters-----------------------------------------
//
/// This sets the combination method used by the History
/// \param Meth the method which should be used. predefined inside the \c
/// predefinedMethods struct LikelinessHistoryCombinator<method>()
void setLikelinessHistoryCombinator(
const std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
&Meth) noexcept {
LikelinessHistoryCombinator = Meth;
}
/// sets the predefined method for the combination of the possible Identifiers
/// and the master
/// \param Meth the method which should be used. predefined inside the \c
/// predefinedMethods struct LikelinessFeedbackCombinator<method>()
void setLikelinessFeedbackCombinator(
const std::function<std::vector<Symbol>(
std::vector<Symbol>, std::vector<Symbol>)> &Meth) noexcept {
LikelinessFeedbackCombinator = Meth;
}
/// Sets the used combination method for Possible Identifiers
/// \param Meth the method which should be used. predefined inside the \c
- /// predefinedMethods struct PossibleIdentifierCombinationMethod<method>()
- void setPossibleIdentifierCombinationMethod(
+ /// predefinedMethods struct setReliabilityAndConfidenceCombinator<method>()
+ void setReliabilityAndConfidenceCombinator(
const std::function<std::vector<Symbol>(
std::vector<Symbol>, ReliabilityType)> &Meth) noexcept {
- PossibleIdentifierCombinationMethod = Meth;
+ ReliabilityAndConfidenceCombinator = Meth;
}
/// sets the input reliability combinator method
/// \param method the method which should be used. predefined inside the \c
/// predefinedMethods struct combination<method>()
- void setInputReliabilityCombinator(
+ void setAbsoluteAndSlopeReliabilityCombinationMethod(
const std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
&&method) noexcept {
- InputReliabilityCombinator = method;
+ AbsoluteAndSlopeReliabilityCombinationMethod = method;
}
//
// ----------------predefined combinators------------------------------------
//
/// This struct is a pseudo name space to have easier access to all predefined
/// methods while still not overcrowding the class it self
struct predefinedMethods {
/// predefined Method
static ReliabilityType
LikelinessHistoryCombinatorMin(ReliabilityType A, ReliabilityType B) noexcept {
return std::min(A, B);
}
/// predefined Method
static ReliabilityType
LikelinessHistoryCombinatorMax(ReliabilityType A, ReliabilityType B) noexcept {
return std::max(A, B);
}
/// predefined Method
static ReliabilityType
LikelinessHistoryCombinatorMult(ReliabilityType A, ReliabilityType B) noexcept {
return A * B;
}
/// predefined Method
static ReliabilityType
LikelinessHistoryCombinatorAverage(ReliabilityType A,
ReliabilityType B) noexcept {
return (A + B) / 2;
}
/// predefined method
static std::vector<Symbol>
LikelinessFeedbackCombinatorAverage(std::vector<Symbol> A,
std::vector<Symbol> B) noexcept {
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Likeliness =
(tmp_me.Likeliness + tmp_other.Likeliness) / 2;
}
}
return A;
}
/// predefined method
static std::vector<Symbol>
LikelinessFeedbackCombinatorMin(std::vector<Symbol> A,
std::vector<Symbol> B) noexcept {
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Likeliness =
std::min(tmp_me.Likeliness + tmp_other.Likeliness);
}
}
return A;
}
/// predefined method
static std::vector<Symbol>
LikelinessFeedbackCombinatorMax(std::vector<Symbol> A,
std::vector<Symbol> B) noexcept {
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Likeliness =
std::max(tmp_me.Likeliness + tmp_other.Likeliness);
}
}
return A;
}
/// predefined method
static std::vector<Symbol>
LikelinessFeedbackCombinatorMult(std::vector<Symbol> A,
std::vector<Symbol> B) noexcept {
for (auto &tmp_me : A)
for (auto &tmp_other : B) {
if (tmp_me.Identifier == tmp_other.Identifier) {
tmp_me.Likeliness = tmp_me.Likeliness * tmp_other.Likeliness;
}
}
return A;
}
/// Predefined combination method for possible Identifiers
static std::vector<Symbol>
- PossibleIdentifierCombinationMethodMin(std::vector<Symbol> A,
+ ReliabilityAndConfidenceCombinatorMin(std::vector<Symbol> A,
ReliabilityType B) noexcept {
for (auto tmp : A)
tmp.Likeliness = std::min(tmp.Likeliness, B);
return A;
}
/// Predefined combination method for possible Identifiers
static std::vector<Symbol>
- PossibleIdentifierCombinationMethodMax(std::vector<Symbol> A,
+ ReliabilityAndConfidenceCombinatorMax(std::vector<Symbol> A,
ReliabilityType B) noexcept {
for (auto tmp : A)
tmp.Likeliness = std::max(tmp.Likeliness, B);
return A;
}
/// Predefined combination method for possible Identifiers
static std::vector<Symbol>
- PossibleIdentifierCombinationMethodAverage(std::vector<Symbol> A,
+ ReliabilityAndConfidenceCombinatorAverage(std::vector<Symbol> A,
ReliabilityType B) noexcept {
for (auto tmp : A)
tmp.Likeliness = (tmp.Likeliness + B) / 2;
return A;
}
/// Predefined combination method for possible Identifiers
static std::vector<Symbol>
- PossibleIdentifierCombinationMethodMult(std::vector<Symbol> A,
+ ReliabilityAndConfidenceCombinatorMult(std::vector<Symbol> A,
ReliabilityType B) noexcept {
for (auto tmp : A)
tmp.Likeliness = tmp.Likeliness * B / 2;
return A;
}
/// The predefined min combinator method
static ReliabilityType combinationMin(ReliabilityType A,
ReliabilityType B) noexcept {
return std::min(A, B);
}
/// The predefined max combinator method
static ReliabilityType combinationMax(ReliabilityType A,
ReliabilityType B) noexcept {
return std::max(A, B);
}
/// The predefined average combinator method
static ReliabilityType combinationAverage(ReliabilityType A,
ReliabilityType B) noexcept {
return (A + B) / 2;
}
/// The predefined average combinator method
static ReliabilityType combinationMult(ReliabilityType A,
ReliabilityType B) noexcept {
return A * B;
}
};
// ----------------------------------------------------------------
// Stored Values
// ----------------------------------------------------------------
private:
std::vector<std::vector<Symbol>> History;
std::size_t HistoryMaxSize;
std::vector<Symbol> FeedbackSymbols;
ValueType previousSensorValue;
unsigned int timeStep;
std::vector<IdentifierType> Identifiers;
bool PreviousSensorValueExists = false;
std::shared_ptr<
RangeConfidence<ReliabilityType, IdentifierType, ValueType>>
ConfidenceFunction;
std::shared_ptr<Abstraction<ValueType, ReliabilityType>> AbsoluteReliabilityFunction;
std::shared_ptr<Abstraction<ValueType, ReliabilityType>>
ReliabilitySlopeFunction;
std::shared_ptr<Abstraction<std::size_t, ReliabilityType>> TimeFunctionForLikeliness;
// combination functions
std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
- InputReliabilityCombinator = predefinedMethods::combinationMin;
+ AbsoluteAndSlopeReliabilityCombinationMethod = predefinedMethods::combinationMin;
std::function<std::vector<Symbol>(std::vector<Symbol>, ReliabilityType)>
- PossibleIdentifierCombinationMethod =
- predefinedMethods::PossibleIdentifierCombinationMethodMin;
+ ReliabilityAndConfidenceCombinator =
+ predefinedMethods::ReliabilityAndConfidenceCombinatorMin;
std::function<std::vector<Symbol>(std::vector<Symbol>,
std::vector<Symbol>)>
LikelinessFeedbackCombinator =
predefinedMethods::LikelinessFeedbackCombinatorAverage;
std::function<ReliabilityType(ReliabilityType, ReliabilityType)>
LikelinessHistoryCombinator = predefinedMethods::LikelinessHistoryCombinatorMax;
// ---------------------------------------------------------------------------
// needed Functions
// ---------------------------------------------------------------------------
/// returns the Reliability
/// \param actualValue The Value of the Sensor
/// \param lastValue of the Sensor this is stored in the class
/// \param _timeStep It has an effect on the difference of the current
/// and last value This might not be needed anymore
/// \brief it returns the combination the \c Reliability function and \c
/// ReliabilitySlopeFunction if the previous value exists. if it doesn't it only
/// returns the \c Reliability function value.
ReliabilityType getReliability(const ValueType &actualValue,
const ValueType &lastValue,
const unsigned int &_timeStep) noexcept {
ReliabilityType relAbs = AbsoluteReliabilityFunction->operator()(actualValue);
if (PreviousSensorValueExists) {
ReliabilityType relSlo = ReliabilitySlopeFunction->operator()(
(lastValue - actualValue) / (ValueType)_timeStep);
- return InputReliabilityCombinator(relAbs, relSlo);
+ return AbsoluteAndSlopeReliabilityCombinationMethod(relAbs, relSlo);
} else
return relAbs;
}
/// adapts the possible Identifiers by checking the History and combines those
/// values.
/// \brief combines the historic values with the \c TimeFunctionForLikeliness function
/// and returns the maximum Reliability for all Identifiers.
std::vector<Symbol> SymbolsFromHistory() noexcept {
// iterate through all history entries
std::size_t posInHistory = 0;
std::vector<Symbol> symbolFromHistory; //History Symbols
for (auto timeStep = History.begin(); timeStep < History.end();
timeStep++, posInHistory++) {
// iterate through all possible Identifiers of each history entry
for (Symbol &symbol : *timeStep) {
IdentifierType historyIdentifier = symbol.Identifier;
ReliabilityType historyConf = symbol.Likeliness;
historyConf = historyConf * TimeFunctionForLikeliness->operator()(posInHistory);
bool foundIdentifier = false;
for (Symbol &pS : symbolFromHistory) {
if (pS.Identifier == historyIdentifier) {
pS.Likeliness =
LikelinessHistoryCombinator(pS.Likeliness, historyConf);
foundIdentifier = true;
}
}
if (foundIdentifier == false) {
Symbol possibleIdentifier; // Symbol
possibleIdentifier.Identifier = historyIdentifier;
possibleIdentifier.Likeliness = historyConf;
symbolFromHistory.push_back(possibleIdentifier);
}
}
}
return symbolFromHistory;
}
/// saves the Identifiers in the History
/// \brief It checks the incoming Identifiers if any have a Reliability
/// greater than 0.5 all of them get saved inside the History and then the
/// History get shortened to the maximal length. It only saves the Value if
/// the History is empty.
///
/// \param actualPossibleIdentifiers The Identifiers which should be saved
///
/// \note Does the History really make sense if the values are to small it
/// only stores something if it's empty and not if it isn't completely filled
void saveInHistory(
const std::vector<Symbol> &actualPossibleIdentifiers) noexcept { // Symbols
// check if the reliability of at least one possible Identifier is high
// enough
bool atLeastOneRelIsHigh = false;
for (Symbol pS : actualPossibleIdentifiers) {
if (pS.Likeliness > 0.5) {
atLeastOneRelIsHigh = true;
}
}
// save possible Identifiers if at least one possible Identifier is high
// enough (or if the history is empty)
if (History.size() < 1 || atLeastOneRelIsHigh == true) {
History.insert(History.begin(), actualPossibleIdentifiers);
// if history size is higher than allowed, save oldest element
while (History.size() > HistoryMaxSize) {
// delete possibleIdentifierHistory.back();
History.pop_back();
}
}
}
};
} // namespace agent
} // namespace rosa
#endif // !ROSA_AGENT_ReliabilityConfidenceCombinator_H
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Nov 29, 10:39 PM (3 h, 13 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
242477
Default Alt Text
(62 KB)
Attached To
Mode
R20 SoC_Rosa_repo
Attached
Detach File
Event Timeline
Log In to Comment